’ e ;.ubﬂafntend) A F“F

TION PAGE READ INSTRUCTIONS

; SEFORE CO”L!TE_EVG FORM
. AD—A204 439 12. GOVT ACCESSION NO. [3. RECIPLENT'S CATALOG NUMBER

5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: SoftTech 8 July 1988 to 8 July 1988
Inc., Ada 86, Version 3.21, VAX 11/780-11/785 (Host) to

Intei 1ApX 80186 (Target). 5. r:arongc'bnc. REPORT NUMBER

7. AUTHOR(s)

National Bureau of Standards
Gaithersburg, MD

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND AOODRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBER
National Bureau of Standards UMBERS
Gaithersburg, MD

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office

United States Department of Defense

A T3 WUWBER UF PAL
Washington, DC 20301-3081 ARES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
National Bureau of Standards UNCLASSIFIED

15e. ASSIFICATION/DOWNGRADING
Gaithersburg, MD gEatDuEé

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered inBlock 20 if different from Report)

UNCLASSIFIED

DTIC

18. SUPPLEMENTARY NOTES

FEB 0 71969
@

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada

Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO)

20. ABSTRACT (Continue on reverse side if necessary and dentify by block number)

Ada 86, Version 3.21, National Bureau of Standards, VAX 11/780-11/785 under VAX/WMS,
Version 4.7 (Host) to Intel iAPX 80186 under Bare machine (Target), ACVC 1.9.

[
DD YU 1473 eo1vion OF 1 NOV 65 IS OBSOLETE
1 a8 73 $/N 0102-LF-014-8601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

8 2 g 0=2 _

AVF Control Number: NBS88VSOFS35_2

Certificate Number: 880708S1l. 09148
SoftTech, Inc.
Ada 86, Ve.rsion 3.21
VAX 11/780 - 11/785 Host and Intel iAPX 80186 Target

Campletion of On-Site Testing:
July 8, 1988

Prepared By:

Software Standards Validation Group
Institute for Camputer Sciences and Technology
National Bureau of Standards
Building 225, Roam A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office
United States Department of Defense

Washington, D.C. 20301-3081

Ada Campiler Validation Summary Report:

Compiler Name: Ada 86, Version 3.21
Certificate Number: 880708S1.09148

Host: L Target:
VAX 11/780 - 11/785 under Intel iAPX 80186 under
VAX/VMS, ' Bare machine
Version 4.7 _

Testing Campleted July 8, 1988, using ACVC 1.9

This report has been reviewed and is approved.

Rl

Ada~Validation Facility
Dr. David K. Jeffe:sin \

Chief, Information Systems
Ergineering Division
National Bureau of St:andards
Gaithersburg, MD 20899

al Ll ——

Xda Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexardria, VA 22311

W, AL N

Ada Joint Program Office
Virginia L. Castor
Director

Department of Defense
Washington DC 20301

%

L]
NNNNOAO S W

WWLWWLWWWWWLWLWWW
[] .

é

APPENDIX B

APPENDIX C

APPENDIX D

* »
(PSS 0

TABLE OF OONTENTS

INTRODUCTION

PURPCSE OF THIS VALIDATION SUMMARY REFORT
USE OF THIS VALIDATION SUMMARY REFORT

m..:coo-.oo....
DEFINITION OF TERMS . . « « & « « &

ACVC TEST CIASSES .« + ¢« o « o &

CONFIGURATION INFORMATION
CONFIGURATION TESTED . . « . « .
IMPLEMENTATION CHARACTERISTICS .
TEST INFORMATION

TESTRESULTS « ¢ &+ « ¢ o o o o &
SUMMARY OF TEST RESULTS BY CIASS .

SUMMARY OF TEST RESULTS BY CHAPTER

WITHDRAWN TESTS . ¢ ¢ « & « « &
INAPPLICABLE TESTS . . « « « + &

TEST, PROCESSING, AND EVALUATION MDDIFICEEIONS

-

¢ o © o o

ADDITIONAL TESTING INFORMATION . . .
Prevalidation« . « .« .« .
Test Method . . . ¢« v ¢ ¢« ¢ ¢ « &
Test Site .« ¢ ¢ ¢ ¢ v ¢ ¢ o o o &

CONFORMANCE STATEMENT

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHCRAWN TESTS

e o o o 1=2
e v s o e o 12
e o o s s o 1=3
e e o o o o 1=3
e e o s o o 1-4
e s s o s o 2=}
e s o v o o 22
e« o v s o « 3=1
« o e s 3-1
e e o o o s 3=2
e o o o o o 32
« o . e » 3=2
e o 3-4
e s s s o « 3=5
e« e s s« o o« 375
e« ¢ o o « o« 3-5
e s e s s s 36
Accession For
NTIS GRA&I il
DTIC TAB a
Unannounced O
Justification 4
By . — .
Distribution/
Avallxbillty Codes“_ﬁ_
o AvaiL anlfor
iDist bpeui.l

.._ e e ———————

- CHAPTER 1

INTRODUCTION

N
This Validation Summary Report %¥SR) describes the extent to which a
specific Ada campiler conforms to the Ada Standard, ANSI/MIL~STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this campiler using the Ada Campiler
Validation CapabilityafACVe)’. An Ada campiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that

< Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits same implementation
deperdencies—for example, the maximum length of identifiers or the
maximm values of integer types. Other differences between campilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies abserved
during the process oftestingthiscarpile.raregiveninthis;r?;r‘tj
This information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
coampiler and evaluating the results.\ The purpose of validating is to
ensure conformity of the compiler to\the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

S/

lep) —

1-1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPCRT

This VSR documents the results of the validation testing performed on an
AMa campiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by
the campiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-deperdent behavior is
allowed by the Ada Standard

Testing of this compiler was conducted by the National Bureau of
Standards according to policies and procedures established by the Ada
Validation Organization (AVO). On-site testing was campleted July 8,
1983, at SoftTech Corporation, Boston, Mass.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AW
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedam of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and compiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject cowpiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards

Building 225, Room A266

Gaithersburg, Maryland 20899

1-2

1.3 REFERENCES

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexardria VA 22311

1. Reference Manmual for the Ada
ANSI/MIL~STD~1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide.,
December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada Commentary

Ada Standard
Applicant

AVF

AVO

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada campiler to
the Ada programming language.

An Ada Commentary contains all information relevant to
the point addressed by a camment on the Ada Standard.
These comments are given a unique identification mumber
having the form AI-ddddd.

ANSI/MIL~STD-1815A, February 1983 and ISO 8652-1987.

The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for

conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures apd
Guidelines

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
campilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

1-3

\

puct et

Compiler A processor for the Ada language. In the comtext of
this report, a campiler is any language processor,
including cross-compilers, translators, and
interpreters. ‘

failed test An ACVC test for which the campiler generates a result
that demonstrates nonconformity to the Ada Standard.

st The camputer on which the campiler resides.
applicable An ACVC test that uses features of the language that a
st compiler is not required to support or may legitimately
support in a way other than the cne expected by the
)| Bnguage The language Maintenance Panel (IMP) is a camuittee

pdintenance established by the 2Ada Board to recommend
interpretations and Panel possible changes to the
ANSI/MIL~STD for Ada.

Passedtest An ACVC test for which a campiler generates the expected

result.
arget The camputer Afor which a campiler generates code.

Test An Ada program that checks a campiler's conformity
regarding a particular feature or a cambination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test fournd to be incorrect and not used to check

“fest conformity to the Ada Standard. A test may be incorrect

because it has an invalid test dbjective, fails to meet
its test objective, or contains illegal or errcnecus use
of the language.

1.5 ACVC TEST CIASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce campilation
or link errors.

Class A tests check that legal Ada programs can be successfully campiled
ard executed. There are no explicit program camponents in a Class A

1-4

‘_-—___

test to check semantics. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler.
A Class A test is passed if no errors are detected at compile time arnd
the program executes to produce a PASSED message.

Class B tests check that a campiler detects illegal language usage.
Class B tests are not executable. Each test in this class is campiled
and the resulting campilation listing is examined to verify that every
syntax or semantic exror in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
campiler.

Class C tests check that legal Ada programs can be correctly campiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABIE message irdicating the result when it is
executed.

Class D tests check the compilation amd execution capacities of a
campiler. Since there are no capacity requirements placed on a campiler
by the Ada Standard for some parameters—for example, the mumber of
identifiers permitted in a caomwpilation or the mmber of units in a
library—a campiler may refuse to campile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to camwpile
because the capacity of the caompiler is exceeded, the test is classified
as inapplicable. If a Class D test campiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

EachClassEtastmself—dmeclungardpmdumaNUfAPPIlCABIE,
PASSED, or FAILED message when it is campiled and executed. However,
the Ada Standard permits an implementation to reject programs contammg
sane features addressed by Class E tests during campilation. Therefore,
a Class E test is passed by a cawiler if it is compiled successfully
and executeS to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are campiled separately and execution is
attempted. A Class L test passes if it is rejected at link time——that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT ard the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat same campiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by same of the
Class C tests for chapter 14 of the Ada Standard. The operation of

1-5

REFORT and CHECK FIIE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the-tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximm length of 72 characters, use small mmeric
values, and place featuwres that may not be supported by all
implementations in separate tests. However, same tests contain values
that require the test to be customized according to
implementation-specific values—for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite amd
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an inplementation
is considered each time the mplementatlm is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erronecus language oonstruct is
withdrawn from the ACVC and, therefore, is not used in testing a
campiler. The tests withdrawn at the time of validation are given in

Apperdix D.

CHAPTER 2
CONFIGURATION INFORMATION

2.1 OCONFIGURATION TESTED

The candidate campilation system for this validation was tested under
the following configuration:

Campiler: Ada 86, Version 3.21

ACVC Version: 1.9

Certificate Number: 88070851.09148
Host Computer:
Machine: VAX 11/780 - 11/785
Operating System: VAX/WMS
Version 4.7
Memory Size: 12 megabytes
Target Computer:
Machine: Intel iAPX 80186
Operating System: Bare machine
Memory Size:
Cammunications Network: DECNET*
Ethernet

*DECNET for this implementation represents the use of VAX 11/780-
11/785 as host.

2-1

2.7 TIMPIEMENTATION CHARACTERISTICS

One of the purposes of validating campilers is to determine the behavior
of a camwiler- in those areas of the Ada Standard that permit
implementations to differ. Class D ard E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

Capacities.

The coampiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately campiled as subunits
nested to 17 levels. It correctly processes a campilation
containing 723 variables in the same declarative part. (See
test D55A03A..H (8 tests), D56001B, D64005E..G (3 tests), ard
D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation 64 bit integer calculations. (See tests D4A0023,
D4A002B, D4AO04A, and D4AO04B.)

Predefined types.

This implementation supports the additional predefined types
LONG_INTEGER and IONG FLOAT in the package STANDARD. (See

tests B86001BC and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX_INT during campilation, or it may
raise NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E24101A.)

Expression evaluation.

Apparently all default initialization expressions or record
caponents are evaluated before any value is checked to belong
to a camponent's subtype. (See test C32117A.)

2=2

Assigments for subtypes are performed with less precision than
the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Sometimes NUMERIC ERROR is raised when an integer 1literal
operand in a camparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rourding.

The method used for rounding to integer is apparently round to
even. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..Z.) .

The method used for rounding to integer in static universal real
expressions is apparently round toward zero. (See test C4A014A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a ‘'IENGIH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT camponents raises NUMERIC FRROR. (See test
C36003A.)

NUMERIC ERROR is raised when an array type with INTBGER'IAST + 2
components is declared. (See test C36202A.)

NUMERIC ERRCR is raised when an array type with SYSTEM.MAX INT +
2 components is declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'IAST
raises no exception. (See test C52103X.)

A packed two-dimensional BOOIEAN array with more than

2=3

INTEGER'IAST camponents raises CONSTRAINT ERROR when the length

of a dimension is calculated and exceeds INTEGER'IAST. (See
test CS2104Y.)

Amﬂlamymmmdmslmoflengthgreaterthan
INTEGERUYAST may raise NUMERIC_ERROR or OONSTRAINT ERRCR either
when declared or assigned. Altermatively, an mplementatlon may
accept the declaration. However, lengths must match in array
slice assigrments. This implementation raises CONSTANT ERROR
when array objects are assigned. (See test ES52103Y.)

In assigning cne-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two—dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINT ERRCR is raised
when checking whether the expression's subtype is campatible
with the target's subtype. (See test CS2013A.)

Discriminated types.

During campilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a campatible discriminant
constraint. This implementation accepts such subtype indications
during campilation. (See test E38104A.)

In assigning record types with disciminants, the expression
appearstobeevaluatedmltsentlmtybeforedJNSIRAmTERROR
is raised when checking whether the expression's subtype is
campatible with the target's subtype. (See test CS52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bourds.
(See test E43212B.)

Not all choices are evaluated before CONSTRAINT ERROR is raised

if a bound in a nonmull rarnge of a nonmull aggregate does not
belong to an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by same of the tests. If a
representation clause is not supported, then the implementation
must reject it. :

Emmeration representation clauses containing noncontiguous
values for emmeration types other than character and boolean
types are supported. (See tests C35502I..J, C35502M..N, and
A39005F.)

Emmeration representation clauses containing noncontiguous
values for character types are supported. (See tests
355071..J, C35507M..N, and CS5B16A.)

Emumeration representation clauses for boolean types containing
representational values other than (FAILSE => 0, TRUE => 1) are
Supported. (See tests C35508I..J and C35508M..N.)

Iength clauses with SIZE specifications for emmeration types
are supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

Pragmas.
The pragma INLINE is supported for procedures. The pragma

INLINE is supported for functions. (See tests IA3004A, IA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.
The package SEQUENTIAL IO cannot be instantiated with

unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D and EE2201E.)

The package DIRECT IO cannot be instantiated with with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101H, EE2401D and EE4201G.)

The director, AJPO, has determined (AI-00332) that every call to

2-5

m

OPEN and CREATE must raise USE ERROR or NAME ERROR if file
mput/axtp.rt is not supported. This mplanem:atmn exhibits
this behavior for SEQUENTIAL IO, DIRECT IO and TEXT IO.

- Generics.

Gaxeric—éubprcgram declarations ard bodies can coampiled in
separate campilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be campiled in
separate campilations. (See tests CA2009C, BC3204C, ard
BC3205D.)

Generic unit bodies and their sulunits can be campiled in
separate compilations. (See test CA3011A.)

2-6

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC camprises 3122 tests. When this campiler was
tests, 28 tests had been withdrawn because of test errors. The AVF
determined that 412 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
Modifications to the code, processing, or grading for 25 tests were
required to successfully demonstrate the test abjective. (See section
3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULIS BY CILASS

RESULT TEST CIASS TOTAL
A B c D E L

Passed 105 1048 1454 17 12 46 2682
Inapplicable S 3 399 0 5 0 412
Withdrawn 3 2 21 0 2 0 28

TOTAL 113 1053 1874 17 19 46 3122

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CGHAPTER TOTAL

2_3_4_5_6_7_8_9.10.11 12 313 14 _
Passed 190 498 535 245 165 98 141 327 137 36 234 3 73 2682

Inapplicable 14 74139 3 0 O 2 0 O O O 0180 412
Withdrawn 2 14 3 0 1 1 2 0 0 0 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 28 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35A03E C35A03R C37213H C37213J C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C E66001D A74106C C85018B C387B04B CC1311B
BC3105A AD1AO1A CE2401H CE3208A

See Apperdix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Same tests do not apply to all campilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of ancther test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 412
test were inapplicable for the reasons indicated:

C35702A uses SHORT FIOAT which is not supported by this implementation.

A35801E At the case statement (lines 54-63), the optimizer tries to

identify which of the cases will be done during execution. The

optimizer recognizes that the variable "I" which is of type integer, is
3-2

not initialized and appropriately raises a PROGRAM ERROR exception.
NOTE: This test passes without the /OPTIMIZE cption.

A39005G uses a record repmentatlm clause which is not supported by
this campiler.

The following (14) tests use SHORT INTEGER, which is not supported by
this campiler.

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B BS5B09D

C45231D requires a macro substitution for any predefined mmeric types
other than INTEGER, SHORT INTEGER, LONG_INTEGER, FLOAT, SHORT FLOAT, and
LONG_FLOAT. 'nuscartpllerdoesnotsupportanysxmtypas

C45304A, CA5304C and C46014A expect exceptions to be raised as the
result of performing "dead assigmments" (assigrments to a variable whose
value is never used in the program).

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are not supported by this compiler.

C455310, C€45531P, C455320, and C45532P use coarse 48-bit fixed-point
base types which are not supported by this campiler.

B86001D requires a predefined numeric type other than those defined by
the Ada language in package STANDARD. There is no such type for this
implementation.

C86001F redefines package SYSTEM, but TEXT IO is made cbsolete by
this new definition in this mplemantatlm amd the test cammot be
executed since the package REPORT is dependent on the package TEXT IO.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instartiations of package DIRECT IO
with unconstrained array types and record types having discriminants
without defaults. These instantiations are rejected by this camwpiler.

The following 174 tests are inapplicable because sequential, text, and
direct access files are not supported.

CE2102C CE2102G..H(2) CE2102K CE2104A. .D(4)
CE2105A..B(2) CE2106A..B(2) CE2107A..I(9) CE2108A..D(4)
CE2109A..C(3) CE2110A..C(3) CE2111A..E(5) CE2111G..H(2)
CE2115A..B(2) CE2201A..C(3) CE2201F..G(2) CE2204A..B(2)
CE2208B CE2210A CE2401A..C(3) CE2401E..F(2)

3-3

CE2404A CE2405B CE2406A CE2407A
CE2408A CE2409A CE2410A CE2411A
AE3101A CE3102B EE3102C CE3103A
CE3104A CE3107A CE3108A.B(2) CE3109A
CE3110A CE3111A..E(5) CE3112A..B(2) CE3114A..B(2)
CE3115A "CE3203A CE3301A..C(3) CE3302A
CE3305A CE3402A..D(4) CE3403A..C(3) CE3403E..F(2)
CE3404A..C(3) CE3405A..D(4) CE3406A..D(4) CE3407A..C(3)
CE3408A..C(3) CE3409A CE3409C..F(4) CE3410A
CE3410C..F(4) CE3411A CE3412A CE3413A
CE3413C CE3602A..D(4) CE3603A CE3604A
CE3605A..E(5) CE3606A..B(2) CE3704A..B(2) CE3704D..F(3)
CE3704M..0(3) CE3706D CE3706F CE3804A. .E(5)
CE3804G CE38041 CE3804K CE3804M
CE3805A..B(2) CE3806A CE3806D..E(2) CE3905A..C(3)
CE3905L CE3906A..C(3) CE3906E..F(2)

The following 201 tests require a floating-point accuracy that exceeds
the maximm of 15 digits supported by this implementation:

C24113L..Y (14 tests)
C35706L..Y (14 tests)
C35708L..Y (14 tests)
C45241L..Y (14 tests)
C45421L..Y (14 tests)
C45524L. .2 (15 tests)
CAS641L..Y (14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)
C35802L..2 (15 tests)
C45321L..Y (14 tests)
C45521L..2 (15 tests)
C45621L..2 (15 tests)
C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVAIUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to campensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
campletion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub-tests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 24 Class B tests.

The following Class B tests were split because syntax errors at ane
point resulted in the campiler not detecting ather errors in the test:

B2A0O3A..C (3 tests) B33201C B33202C B33203C
B33301C B37106A B37201A B37301I B37307B
B38001C B38003A..B B38009A..B B44001A B51001A
B54A01C BS4A01L B95063A BC1008A BC1201L
BC3013A

3-4

monBrequmthatamusmAMMbermsedmaMMma
NUMERIC_ERROR is relivant on line 35, etc. The test has been evaluated
arxlrecmmerﬂedtobegradedaspassed

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of tast results for ACVC Version 1.9 produced
by the Ada 86 was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the campiler successfully
passed all applicable tests, and the campiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Ada 86 using ACVC Version 1.9 was conducted on~site by a
validation team from the AVF. The oonfiguration consisted of a VAX
11/780 - 11/785 host operating under VAX/WMS, Version 4.7, and an iAPX
80186 target operating under bare machine. The host and target
camputers were linked via DECNET.

A magnetic tape containing all tests was taken on-site by the validation
team for processing. Tests that make use of implementation-specific
values were customized on-site after the magnetic tape was loaded. Tests
requiring modifications during the prevalidation testing were not
included in their modified form on the magnetic tape. The contents of
the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was
campiled and linked on the VAX 11/780 - 11/785, and all executable tests
were run on the iAPX 80186. Object files were linked on the host
canputer, and executable images were transferred to the target computer
via DECNET. Results were printed from the host camputer, with results
being transferred to the host camputer via DECNET.

The coampiler was tested using cammand scripts provided by SofTech,
Incorporated ard reviewed by the validation team. The compiler was
tested using all default option settings without exception.

Tests were compiled, linked, and executed (as appropriate) using a
singlehostomputerandasmgletaxgetcarp.rter Test output,
campilation listings, and job logs were captured on magnetic tape and
archived at the AVF. The listings examined on-site by the validation
team were also archived.

3-5

_—-—‘

3.7.3 Test Site

Testing was conducted at SofTech, Incorporated, Boston, Massachusetts
and was cmpleted_on July 8, 1988.

DECTARATION OF CONFORMANCE

A-1

Compiler Implementer:

f—_'—_f,

APPENDIX A

DECLARATION OF CONFORMANCE

SofTech Inc.
460 Totten Pond Road
Waltham, MA 02254

Ada validation Facility: National Bureau of Standards (NBS)

Institute for Computer Sciences and Technology (ICST)
Software Standards Validation Group

Building 225, Room A266

Gaithersburg, MD 20899-9999

Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Compiler Name:
Host Architecture
Target Architecture

Base Compiler Name:
Host Architecture
Target Architecture

Base Compiler Name:
Host Architecture
Target Architecture

i,ase Compiler Name:
Host Architecture
Target Architecture

Base Compiler Name:
Host Architecture
Target Architecture

Base Compiler MName:
Host Architecture
Target Architecture

BASE CONFIGURATION(S) -

Adasgeé Version: 3.21

IsA: VAX 11/780 - 11/785 OS&VER #: VAX/VMS 4.7

ISA: Intel iAPX 8086 OS&VER #: (bare machine)
Adasé Version: 3.21

ISA: VAX 11/780 - 11/78S OS&VER #: VAX/VMS 4.7

ISA: Intel iAPX 80186 OS&VER #: (bare machine)
Adasé Version: 3.21

ISA: VAX 11/780 - 11/785 OS&VER #: VAX/VMS 4.7

ISA: Intel iAPX 80286 real mode OS&VER #: (bare machine)
Adagé Version: 3.21

ISA: VAX 11/780 - 11/785 OS&VER #: VAX/VMS 4.7

ISA: Intel iAPX 80286 protected mode
OS&VER #: (bare machine)

Adagé Version: 3.21
ISA: VAX 11/780 - 11/78S5 OS&VER #: VAX/VMS 4.7
ISA: Intel iAPX 80386 compatible real mode
OS&VER #: (bare machine)

aAdags Version: 3.21
ISA: VAX 11/780 ~ 11/785 OS&VER #: VAX/VMS 4.7
ISA: Intel iAPX 80386 compatible protected mode

‘ . cmtron.men - . OSG&VER #: (bare machine)
s gg#mm,: T A o g . . . o

f_-_-_*

\

DERIVED COMPILER ‘REGISTRATION
EQUIVALENT CONFIGURATION(S)

Base Compiler: Name: - Ada86" - : Version: 3.21, 1.59, 1.70
Host Architecture ~ - ISA: VAX 700 and 8000 Series OS&VER #: VAX/VMS 4.7
Target Architecture - ISA: Intel iAPX 8086 OS&VER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80186 OS&VER #: (bare machine)

Target Architecture.- ISA: Intel iAPX 80286 Teal mode OS&VER #: (bare machine)
Target Architecture - ISA: .Intel iAPX 80286 protected OS&VER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80386 comp real OS&VER #: (bare machine)

Target Architecture - ISA: Intel iAPX 80386 comp prot OS&VER #: (bare machine)
Ca) .
Base Compiler Name: adasse Version: 3.21, 1.59, 1.70
Host Architecture :- ISA: MicroVaX II . S OS&VER §: MicrovMs 4.7
Target Architecture -~ ISA: Intel iAPX 8086 OS&VER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80186 OS&VER #: (bare machine)
Target Architecture ~ ISA: Intel iAPX 80286 real mode OS&VER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80286 protected OS&VER #: (bare machine)
Target Architecture — ISA: Intel iAPX 80386 comp real OS&VER #: (bare machine)
#: (bare machine)

Target Architecture - ISA: Intel iAPX 80386 comp prot OS&VER

IIlIlIIlIlllllIIllllll.l..llllllIIIIllIIIIIIIIIIIIIIIIIII-L_f

DECLARATION OF CONFORMANCE Adag8é 3.21 page 2.

- ' Implementer's Declaration

I, the undersigned, representing SofTech, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler(s) listed in this declaration. I declare that the
SofTech Inc. is _the owner on record of the Ada language compiler(s)
listed above 4and, as such, is responsible for maintaining said
compiler(s) in conformance to ANSI-MIL-STD-1815A. All certificates and
registrations for Ada language compiler(s) 1listed in this declaration
shall be made only in the owner's corporate name.

/éZ?i;??: = 24
Implementer's Signature’and Title a

Implementer's Declaration

Quwner's Declaration

I, the undersigned, representing SofTech Inc., take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that all
of the Ada language compilers listed, and their host /target performance
are in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.
1 have reviewed the Validation Summary Report for the compilers(s) and
concur with the contents.

5 e QL i p/\w;iuw shhy

Owner'sﬁgnatute and Title (/ Date

APPENDIX B
- APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the Ada 86, Version 3.21,
arednscnbedmmefollwmsectmnswmmdlsmsstoplcs mApperdJ.x
F of the Ada Standard. Implementation- specific portions of the package
STANDARD are also included in this apperdix.

package STANDARD is

type INTEGER is range -32_768 .. 32_767;
type LONG_INTEGER is range -2_147_483_648 .. 2_147_483_647;

type FIOAT is digits 6 range —(2#1.111_(5)1111#E+127) ..
(2#1.111_(5) 1111#E+127) ;

type LONG FIOAT is digits 15 range
-(2#1.111_(12)1111_1#E+1023 ..
(2#1.111_ (12)1111 1#E+1023;

type DURATION is delta 2.0**(-14) range -131_072.0 ..
131_072.0;

end STANDARD;

B-1

e

APPENDIX F

APPENDIX P OF THE Ada STANDARD for SofTech's Ada86 toolset
The only allowed implementation dependencies correspond to implementation- -
dependent pragmas, to certain machine_dependent coanventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on .
representation clauses. The implementation-dependent characteristics are
described in the following sections which discuss topics one through eight
as stated in Appendix F of the Ada Language Reference Manual (ANSI/MIL-STD-

1815A). Two other sections, package STANDARD and file naming conventions,
are also included in this appendix.

VVVVYVVVVVVVVVVVVVVVVYVVVVVVYVYVVVVYVVYVVYVVVVVVVVVVYVVYVYVVYVYYYYVVVYVYVYVIVYYY VY
(1) Implementation-Dependent Pragmas

AAAAAAARARAAAARAAAAAAAAANAARAAARAAAAAAAARANAAAAAAANAARNANAAANAAAAANARRARARARARAANARAAAAAAARAA

N R L L RS s R s d S S R e TSR P SN LS SR TR
This section may be copied from the applicant's documentation, but make
sure it covers all the items below.

I e c e ac e TR RS S e ey A e e)

—_—

The pragmas described below are implementation-defined.

Pragma TITLE (arg):

This is a listing control pragma. "Arg" is a CHARACTER
string literal that is to appear on the second line of
each page of every listing produced for a compilation
unit in the compilation. At most, one such pragma may
appear for any compilation, and it must be the first unit
in the compilation (comments and other pragmas excepted).

For many real time applications, fast software reaction to hardware
interrupts is important. A group of pragmas is provided in
recognition of this requirement.

If an Ada task entry has been equated to a hardware interrupt through

an.address.clause .(c.£..LRM_13.5.1), -.the occurrence of the hardware
= interrupt*in-question~is interpreted by the RSL as an entry call to

the corresponding task entry. The object code generated to implement

interrupt entries includes some overhead, since the Ada programmer

is allowed to make use of the full Ada language within the accept

body for the interrupt entry.

|IIIlIIllllIllIll.ll.l...l..llllIIIIIIIIIIIIIIIIIIl---Lf

The pragmas described below let the user specify that interrupt
entries, and the tasks that contain them, meet certain restrictions.

The restrictions speed up the software response to hardware
interrupts.

Pragma FAST_INTERRUPT_ENTRY (entry_simple_name,
SYSTEM.ENTRY_KIND literal)

.This pragma specifies that the named task entry has only
— accept bodies that execute completely with (maskable)
interrupts disabled, and that none of these accept bodies

pecforms operations that may potentially lead to task
switches away from the accept bady.

Pragma INTERRUPT_BANDLER_TASK

This pragma specifies that the task at hand is degenerate
in that the whole task body consits of a single loop, which
in turn contains one or several accept statements for fast
interrupt entries, and which accesses only global variables.

Pragma TRIVIAL_ENTRY (entry_simple_name)

This pragma specifies that all accept statements for the
named entry are degenerate in that their sequence of state-
ments is empty. Moreover, all entry calls to such an entry

-- —are conditional entry calls, and they are issued only from
within accept bodies for fast interrupt entries.

VVVVVYVVYVVVVVVYVVVVVYVVYVVVVVVVVYVVVYVVVYVVVVY VYV YVVVVVVVVVVVY VU VYV VYV YV VY
(2) Implementation-Dependent Attributes

AAAAAAAMRAAAAAARAAAAAAARAAARARAAAAAAAAANAAAARAAPLAILAAAAAARNADNRANARPANANAARAAARAARARARNAARAANAAN

The predefined attribute, X'DISP, is not supported.

T T O g e, P, wey

’ ” g RIS L6 \RGr WG 98 Db - < W

—-—-—-——_—

. vv
(3) Package SYSTEM - - SRR S R R P . o3

.Q.QQ&‘hﬂ&ﬂﬂ‘.ﬁ“hhhhh&ﬁﬁ.AAAA&.‘hAQO.‘AQA&AAA‘QAAA“AAAAAA.A,A.Qﬁﬁhhhﬁ.ﬁhhhahhhhkh
o

- Copytight 1986 Softech, Inc., all :ights :esetved.

-- Copyright (C) 1987, SoETech. Inc.

package SYSTEM is -f[LRM 13.7-and F]

type WORD is range 0..166????5, ~ T R St e
for WORD'SIZE use 16; : T .- =—see[LRM 3.4(10)]
—- Ada SIZE attribute gives 16, but machine size is 32.

type BYTE is range 0..255;
for BYTE'SIZE use 8; ST . Coe K o cor
-- Ada SIZE attribute gives 8, -but machine size:'is 16.

- subtype REGISTER is SYSTEM.WORD:;

--3$START iAPX86, iAPX186, iAPX286R, iAPX386R, PC_DOS
subtype SEGMENT_REGISTER is SYSTEM.REGISTER:;

NULL_SEGMENT: constant SYSTEM.SEGMENT REGISTER := 0;
--#STOP 1iAPXB86, iAPX186, iAPX286R, iAPX386R, PC_DOS

--#START iAPX286P, iAPX386P

- type SEGMENT_LENGTH IN_BYTES is range 1..65536;- R
-——# -- Gives the range the length an iAPX286 memory segment can be.

-—% -— The hardware deals with segment limits which is the length

-—# -- of the segment relative to the base minus one.

-——# -- It is more convenient to use the length of the segment

-4 -- 80 this type is provided.

-~% ~- See page 7-13 of the Intel 1APX286 Programmer's Reference Manual.

--$ type PRIVILEGE_LEVEL is range 0..3;
-—# for PRIVILEGE_LEVEL'SIZE use 2:

- -- Privilege level as defined by the iAPX286 hardware.
-—# -- The following types form an iAPX286 selector as described on page 7-11
-—# -- of the Intel iAPX286 Programmer's Reference Manual.

=% type DESCRIPTOR_TABLE_INDEX is range 0..8191;
-——# for DESCRIPTOR_TABLE_INDEX'SIZE use 13;
e -- Index into the global or local descriptor table.

1 type DESCRIPTOR_TABLE_INDICATOR is T L SRR T . N
WUSE GLOBAL DESCRFPTOR TABLE, ~USE_LOCAL_DESCRIPTOR TABLE)

-4 for DESCRIPTOR_TABLE_INDICATOR use
-4 {USE_GLOBAL_DESCRIPTOR_TABLE => 0, USE_LOCAL_DESCRIPTOR_TABLE => 1):

-—# for DESCRIPTOR_TABLE_INDICATOR'SIZE use 1;
-—4 ~~ Indicates whether to use the global or the local descriptor table.

== type SEGMENT_REGISTER is
-4 record
== -- This is a segment selector as defined by the iAPX286 hardware.

4___”

f""

. - -- See page 7-11 of the Intel iAPX286 Programmer's Reference Manual.

-4 DESCRIPTOR_INDEX: DESCRIPTOR_TABLE_INDEX;
- - -- This is an index into either the global or the local

-3 -~ descriptor table. The index will select one of the 8 byte
ot ; -~ descriptors in the table.
e | -~ The table to use is given by the TABLE_INDICATOR field.
-——% -~ NOTE:
e -~ Even if an index is in the proper range, it might not refer
e | -- to an existing or valid descriptor. See page 7-5 of the
] | -- Intel 1APX286 Programmer's Reference Manual.
-3 TABLE_INDICATOR: DESCRIPTOR_TABLE_ INDICATOR:
e -- Whether the index is an index into the global or the local
— -- descriptor table;
et] REQUESTED_PRIVILEGE_LEVEL: PRIVILEGE_LEVEL;
e -~ The requested privilege level reflects the privilege level of
-—% -- original supplier of the selector. Needed when addresses are
-3 -- passed through intermediate levels. See page 7-14 of the
- -- Intel iAPX286 Programmer's Reference Manual.
-—% end record:;

St | for SEGMENT_REGISTER'SIZE use 16;

--% for SEGMENT_REGISTER use

-4 record

it . -+ REQUESTED_PRIVILEGE_LEVEL at 0 range 0..1;

-—% TABLE_INDICATOR at 0 range 2..2;

L . .. DESCRIPTOR_INDEX . at 0 range 3..15;
-——# end record; ’

-~# NULL_SEGMENT : constant SYSTEM.SEGMENT_REGISTER :=
it (0, USE_GLOBAL_DESCRIPTOR_TABLE, 0);

-4 ~- Index of the IDT descriptor in GDT
- IDT_INDEX : constant DESCRIPTOR_TABLE_INDEX := 2;

--4 -- Size in bytes of the descriptors in IDT
~--4 IDT_ENTRY_SIZE : constant := 8;

—-§STOP iAPX286P, iAPX386P
subtype OFFSET_REGISTER is SYSTEM.REGISTER;

type ADDRESS is

record
SEGMENT: SYSTEM.SEGMENT_REGISTER;
c--u--—.OFFSET_.-SYSTEM.OFFSET_BEGISTER;

(o 4@ ~ T

mel}-é« tQCO[d' Yt Yol e o . d el ' :
for ADDRESS‘SIZE use 32;
for ADDRESS use --see(UMB3 4-10, ASMB86 6-57, -
record - Ada Issue 7]

OFFSET at 0 range 0..15;
SEGMENT at 2 range 0..15;
end record;

-~$START iAPX86, iAPX186, iAPX286R, iAPX386R, PC_DOS

1___’

e

NULL_ADDRESS : constaﬂt SYSTEM.ADDRESS - :=:-(0, 0.);
--$STOP iAPX86, iAPX186, iAPXZBGR; iAPX386R, PC_DOS

HESET I

. ——§START 1APX286P, LAPX386P .° . I _
- NULL_ADDRESS ¢ constant SYSTEM, ADDRESS ‘t= (SYSTEM.NULL SEGMENT, 0):;
-~=}STOP iAPX285Po iAPXBBGP ‘.

- . , . . . L ey e
- e P A . oo e 4T . T B

subtype I0_. ADDRBSS . ¢ .is SYSTEM.REGISTER;

R Y te oep

--#START iAPX86, 1APX186, iAPX286R, iAPX3I86R, :PC_DOS '
type ABSOLUTE_ADDRESS is range 0..l6#FFFFF§;
for ABSOLUTE: ADDRESS'SIZE.use 20;" -
-— Ada SIZE attribute gives 20, but.machine size is 32..
--#STOP iAPX86, iAPX186, iAPX286R, iAPX386R, PC_DOS

--4#START iAPX286P, iAPX386P

- type ABSOLUTE_ADDRESS is . range 0..16!FFFFFF9,

% for ABSOLUTE_ADDRESS'SIZE use 24; .

d -- Ada SIZE attribute gives 24, but machine size is 32.
--4STOP iAPX286P, iAPX386P - .

type NAME is (VAX780_VMS, iAPX86, iAPX186, iAPX286R, iAPX286P,
R . PC_DOS, iAPX386R, iAPX386P);

-—-$#START iAPX8% =~ ...
SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM.iAPX86);
~--Intel 8086 in real address mode. -
--#STOP iAPX86. -
~=#START iAPXlSG
-4 SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM.1APX186);
-—4% --Intel 80186 in real address mode.
--§STOP iAPX186

-~#START iAPX286R .
~-—# SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM.iAPX286R);
-~% ~=Intel 80286 in real address mode.

--#STOP iAPX286R, iAPX386R

--#START iAPX286P
-—# SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM.iAPX286P);
-~-% ~—-~Intel 80286 in protected virtual address mode.

-~#STOP iAPX286P

--#START iAPX386R
~—# SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM.iAPX386R);
-=% --Intel 80386 in real address mode.
<cenesaummense STOP_iAPX386R —— e

o - ’ . - N TR G B et

-

~=#START {APX386P
-4 SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM.iAPX386P);

--4 --Intel 80386 in protected virtual address mode (iAPX286P subset),.
--§STOP iAPX386P

-~#START PC_DOS
-4 SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM.PC_DOS);
--%# --Intel 8086 in real address mode.

--4STOP PC_DOS

IIIIIIIIIIIlIllllllllIllllIIIIlllllllllrlllllIIIIIIIIIIIIIIIIII---1

STORAGE_UNIT: constant := 8;

. --#START 1APX86, iAPX186, iAPX286R, iAPX386R, PC_DOS
MEMORY_SIZE : constant := (2**20)-1 ; ==~ 1_048_575
--$STOP 1iAPX86, iAPX186, iAPX286R, iAPX386R, PC_DOS

—§START 1APX286P, iAPX386P
--§ MEMORY_SIZE : constant := (2**24)-1 ; -= 16_777_215
--JSTOP 1APX286P; iAPX386P

MIN_INT : constant := -(2**31) ; == =2_147_483_648

MAX INT : constant := (2**31)-1 ; == 2_147_483_647

MAX_DIGITS : constant := 15; =-Changed from 9 to 15 to match
--change to LONG_FLOAT in package
-~STANDARD

~-Note that the Intel 8087 Numeric Data Processor BAS dictated the
--value of MAX_DIGITS.

MAX_MANTISSA: constant := 31;
FINE_DELTA : constant := 4.656_512_873_077_392_S5S78_125E~10; =-- 2.0**(-31);

type INTERRUPT TYPE_NUMBER is range 0..255; e

—-Interrupts having the following Interrupt Type Numbers are specific to the
--iAPX86, iAPX186, and iAPX286 CPUs:

--(Note that the following are declared as CONSTANT universal integers rather
--than CONSTANT SYSTEM.INTERRUPT_TYPE_NUMBERs. This is so that they can be
--used in MACHINE_CODE statements, which require all expressions to be static.
--At least in our implementation, conversions such as
-="MACHINE_CODE.BYTE_VAL(SYSTEM.DISPATCH_CODE_INTERRUPT)" are not considered
--to be static.

DIVIDE_ERROR_INTERRUPT : constant := 0;
--Ada semantics dictate that this interrupt must be interpreted as the
—--exception NUMERIC_ERROR.

SINGLE_STEP_INTERRUPT ¢ constant := 1;
--The non-maskable internal interrupt generated by the CPU after the
-—execution of an instruction when the Trap Flag (TF) is set.

NON_MASKABLE_INTERRUPT : constant := 2;
--The hardware—generated external interrupt delivered to the CPU via the
-—NMI,an.,.Ihis interrupt can never be disabled by software and can
mpenettate czitical IL@GLONS ; TIPS ol 7 M IPRN W (0 NPy a whopo o0 o

OVERFLOW _INTERRUPT : constant := 4;

--Ada semantics dictate that this interrupt must be interpreted as the
--exception NUMERIC_ERROR.

--Interrupts having the following Interrupt Type Numbers are specific to the
-~actual confiquration of the iSBC 86/30 board rather than just its CPU:

~=#START iAPX86, iAPX286R, iAPX186R, iAPX2B6P, iAPX386P

—ﬂ---lllllllllllIllllIlllIIlIlIlllllllllllllllllllllllllllllll

RSL_CLOCK_INTERRUBT : constant := 64;
---$STOP . 1APX86, - itAPX286R,; iAPX386R, iAPX286P, iAPX386P
--#START PC_DOS
- --$# RSL_CLOCK_INTERRUPT, .. .:'-:¢, © w3 constant := 8;
--QSTOP PC_DOS .-.:f... R o
--$START iAPX86, 1APX286R, iAPx386R, iApPX286P, iAPX386P, PC_DOS
~-This interrupt is reserved for the use of the RSL in maintaining the
--real-time clock and for the suppozt of DELAY statements.

-

- [N st

--#STOP 1APX86.-iAPX286R. iAPx386R, iApPX286P, iAPXBBSP, PC_DOS

--#START 1APX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P
--Upper 5 bits, supplied by PIC, are 2#01000%, '

--§#STOP iAPXB6, -iAPX286R, iAPX386R, iAPX286P, iAPX386p '’

--#START PC_DOS

-~-§ --Upper 5 bits, supplied by PIC, are 2#00001%,

--§STOP .-PC_DOS .-:. .,)

--4$START iAPX86, iAPXZBGR. iAPx386R, iapx286P, iAPX386P, PC_DOS
--lower 3 bits, de:xved from PIC input number (IR0), are 2#000%.

-— s ’

--By default. this interrupt 15 the hxghest in priority.

—--Assumption: The OUTO0 output of the PIT (alias “TIMER 0 INTR") is
--connected to the PIC input IRO.

--#STOP 1APX86, iAPX286R, iAPX286R, iAPX286P, iAPX386P, PC_DOS

--#START iAPX186

--% RSL_CLOCK_INTERRUPT - ’ : constant := 18;
--# --This interrupt is reserved for the use of the RSL in maintaining the
-~ --real-time clock.
-~#% DELAY_ EXPIRY_INTERRUPT : X constant := 8;
~-§ ——This interrupt is reserved for the use of the RSL in implementing delays
-—% -—-of less than a full RSL clock cycle.

-~-4STOP iAPX186

--#START iAPX86
NUMERIC_PROCESSOR_INTERRUPT : constant := 71;
--This interrupt must be interpreted as the exception NUMERIC_ERRCR.
~-Upper S bits, supplied by PIC, are 2#01000%,
--lower 3 bits, derived from PIC input number (IR7), are 2#111#.

--By default, this interrupt is the lowest in priority.
--Assumption: The 8087 interrupt line (alias Math Interrupt or "MINT"), is
~-connected to the PIC input IR7.

--#STOP iAPX86

~=$START_PC_DOS . et e e = e S
MIC PROCESSOR INTERRUPT W’- constant := NON MASKABLE INTERRUP ’ -

To

~~# -- This interrupt must be interpreted as the exception NUMERIC_ERROR
-—# -- When bits 6 and 7 of port 16400C2# are zero. Otherwise it indicates
~-# -- an I/0 Channel Check or a Read/Write Memory Parity Check.

~-# =- The IBM-PC delivers the numeric processor exceptions via the

~-# -- non-maskable interrupt.

-._’ -

~~#STOP PC_DOS

~=#START iAPX186

IIIllllllIlIlllllllll.ll...llll..l.ll-IIIIIIIIIIIIIIIII---L

. --$ NUMERIC_PROCESSOR_INTERRUPT : constant := 15;
--$ --This interrupt must be interpreted as the exception NUMERIC_ERROR.
-..’ -
--$ —-Upper 5 bits, supplied by PIC, are 2#00001%,
~-§ =--lower 3 bits, derived from PIC input number (IR7), are 2#llli.

~--§ --By default, this interrupt is the lowest in priocrity.

—f - _

~-§ --Assumption: The 8087 interrupt line (alias Math Interrupt or "MINT"), is
--$4 --connected to the PIC input IR7.
--#STOP iAPX186

--#START iAPX286R, iAPX386R, iAPX286P, iAPX386P

-t NUMERIC_PROCESSOR_INTERRUPT : constant := 16;

-4 --alias Processor Extension Error [PRM Numeric Supplement 1-37]
--#STOP iAPX286R, iAPX386R, iAPX286P, iAPX386P

~-#*% The following RSL internal interrupt type numbers must be changed
—-— when the compiler interface has been changed.

--§START iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX386P

--The software interrupt having the following Interrupt Type Number is use

d
--internally and exclusively by the RSL to check if the current stack
--has enough space: °
CHECK_STACK_INTERRUPT = - - : constant := 48;
--The software interrupt having the following Interrupt Type Number is use
d
--internally and exclusively by the RSL to effect switching between tasks:
DISPATCH_CODE_INTERRUPT : constant := 32;
--Interrupts having the following Interrupt Type Numbers (all
--software-generated) are used internally and exclusively by the generated
--code for effecting subprogram entry sequences where there is no SFDD:
ENTER_SUBPROGRAM_WITHOUT LPP_INTERRUPT : constant := 49;
--The generated code uses this interrupt to effect a subprogram entry
--gequence without a Lexical Parent Pointer.
ENTER_SUBPROGRAM_INTERRUPT : constant := 50;
~--The generated code uses this interrupt to effect a subprogram entry
--sequence with a Lexical Parent Pointer.
RN T - « abae vt 330 00 @nee can L . A e
mﬁ.‘gInterrupts.fhaving-zthe-following Interrupt Type Numbers (all software- e

--generated) are used internally and exclusively by the generated code to
-~cause certain Ada exceptions to be forced:

PROGRAM_ERROR_INTERRUPT ¢ constant := S53;
--This interrupt must be interpreted as the exception PROGRAM_ERROR.

CONSTRAINT_ERROR_INTERRUPT : constant := 54;
--This interrupt must be interpreted as the exception CONSTRAINT_ERROR.

NUMERIC_ERROR_INTERRUPT : constant := 55

A——-----IllllllllllllllIllllllllllIllllllllllllllllllllllllllll

s ===

. --This . interrupt must S§ interpreted as the exception NUMERIC_ERROR.

P . Y . .
.- H .. e -z | . L] - .Y PRI S L . LI
H . M .

~-Interrupts having the following Interrupt Type Numbers (all software-

--generated) are used internally and exclusively by the generated code to
-—cause certain RSL services to be invoked-

ALLOCATE OBJECT INTERRUPT : constant 1= 56;

--This interrupt causes an obJect to be allocated in: the heap of the

-—anonymous tast._ RY

I

==The softwate interrupts having the followxng Inte:rupt Type Numbers are
used

--1nterna11y and exclusively by the RSL to effect entry to and exit from

. =-=Innocuous Critical Regions: .

ENTER_INNOCUOUS_CRITICAL_REGION_INTERRUPT: constant.:= 33;

LEAVE_INNOCUOQUS_CRITICAL_REGION_INTERRUPT: constant := 34;

--The software interrupts having the following Interrupt Type Numbers are
~~defined (and used) by the RSL and can be used by the user:

---Used to halt. the execution of the program from any point.
HALT_INTERRUPT : constant := 36;
END_OF_PROGRAM:_INTERRUPT : constant.:=.37; .
STORAGE_ERROR_INTERRUPT - 't constant := 38; : i
--This interrupt must be interpreted as the exception STORAGE ERROR.
--§STOP 1APX86, i1APX186, iAPX286R, 1iAPX3B6R, iAPX286P, iAPX386P

-- -—-§START iAPX286P, iAPX386P

-- LOAD_TASK_REGISTER_INTERRUPT : constant := 37;
-- CLEAR_TS_FLAG_INTERRUPT : constant := 28;
-- HALT_INTERRUPT : constant := 39;

-- --#§STOP 1APX286P, iAPX386P
-=-Interrupts having the following Interrupt Type Numbers are specific to the
-~Intel iAPX 186 and iAPX 286 CPUs:

BOUND_EXCEPTION_INTERRUPT : constant := S;
-~This jinterrupt will be interpreted as the exception CONSTRAINT_ERROR.

UNDEFINED_ OPCODE_EXCEPTION_INTERRUPT : constant := 6;
--This interrupt will be interpreted as the exception PROGRAM_ERROR.

——p e e S o e - - e .o

N
MOCESSOR;EXTBNSION_NOT;AVAILABLE_INTERRUPT: ~Constant $® «7Tp o el o o oo st
2-This interrupt will be interpreted as the exception PROGRAM_ERROR.

—_—‘

--$START PC_DOS

-k —The software interrupt having the following Interrupt Type Number is use
. d .

e --internally and exclusively by the RSL to check if the current stack

~—% =-has enocugh space: :

-——$ CHECK_STACK_INTERRUPT : constant := 96;
\ --§4 ~--The software interrupt having the following Interrupt Type Number is use
d

-—% -~internally and exclusively by the RSL to effect switching between tasks:

--§ DISPATCH_CODE_INTERRUPT : constant := 99;

-4 --Interrupts having the following Interrupt Type Numbers (all
it --software-generated) are used internally and exclusively by the generated
-=# --code for effecting subprogram entry sequences where there is no SFDD:

-4 ENTER_SUBPROGRAM_WITHOUT_LPP_INTERRUPT : constant := 97;
--§ -—The generated code uses this interrupt to effect a subprogram entry
--¢ --sequence without a Lexical Parent Pointer.

-t ENTER_SUBPROGRAM_INTERRUPT. Ceemiwee..- - 3 constant := 98;
--# --The generated code uses this interrupt to effect a subprogram entry
--4 -—-sequence with a Lexical Parent Pointer.

-—4% --Interrupts having the following Interrupt Type Numbers (all software-
~—# --generated) are used internally and exclusively by the generated code to
at --cause certain Ada exceptions to be forced:

=% PROGRAM_ERROR_INTERRUPT : constant := 102;
--# --This interrupt must be interpreted as the exception PROGRAM_ERROR.

-—# CONSTRAINT_ERROR_INTERRUPT : constant := 103;
--# --This interrupt must be interpreted as the exception CONSTRAINT_ERROR.

-—% NUMERIC_ERROR_INTERRUPT . : constant := 104:;
--$ ——This interrupt must be interpreted as the exception NUMERIC_ERROR.

-% --generated) are used internally and exclusively by the generated code to

\ --cause certain RSL services to be invoked: _ e TR L e
\ -‘-‘—_'/TM’:“'.‘—:' y)
} ALLOCATE_OBJECT .INTERRUPT __,gmres: ¢ constant := 105;

.;gmhis‘fﬁfﬁsgupt;causes'an object to be allocated in the heap of the
Esanonymous task.

\-# ~--Interrupts having the following Interrupt Type Numbers (all software-

--The software interrupts having the following Interrupt Type Numbers are

--internally and exclusively by the RSL to effect entry to and exit from
--Innocuous Critical Regions:

ENTER_INNOCUOUS_CRITICAL_REGION_INTERRUPT: constant := 106;

L

-—%# LEAVE_INNOCUQUS_CRITICAL_ REGION_INTERRUPT: constant := 107;

--% HALT_INTERRUPT
~-§ END_OF_PROGRAM_INTERRUPT

constant :
constant :

--#STOP PC_DOS

--Intel "reserves™ interrupts with Interrupt Type Numbers in the range 0..31,
--with 32..255 available to the user. We allow the user to equate interrupts
--in the range 72..103 to entries of .task via Ada address clauses. We also

--allow such use of interrupts 1, 2, and 3, as well as interrupts arriving at

--$START iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P
--PIC inputs IR1l, IR2, IR3, IR4, IR5, and IR6 (Interrupt Type Numbers 65..
70).
--$STOP iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P

--#START iAPX186
--# --iAPX186 inputs INTO, INT1l, and INT2 (Interrupt Type Numbers 12..14).
--4STOP iAPX186 h

--§START PC_DOS
--§ - -- IBM-PC DOS reserves interrupts with Inte:rupt Type Numbers in the
-~ -~ range 0..95. We allow the use of 1, 3, 6, 7, as well as
--# . -= .interrupts arriving at PIC inputs IR2, IR3. IR4, IRS (Inte:rupt
~-%#. . --.Type Numbers 10, 11, 12, and 13). o

~-#STOP - PC_DOS

pragma PAGE;

--The enumeration literals of type ENTRY_KIND distinguish between entries of
--software tasks and interrupt entries, and identify different varieties of
--the latter when used as the second argument in a FAST_INTERRUPT_ENTRY
--pragma:

type ENTRY_KIND is
(

--ORDINARY INTERRUPT ENTRY--

ORDINARY_INTERRUPT_ENTRY,
--This is not a Fast Interrupt Entry. It is invoked by an interrupt
--other than NMI. This entry may be called by a software task as
--well as by interrupt.

g

PRSI)
M-—If an interrupt- is equated to an entry by means ‘of an address
- e --clause, and the FAST_INTERRUPT_ENTRY pragma is not given for that

--entry, the entry wxll be treated as an ORDINARY_INTERRUPT_ENTRY by
--default.

--When this kind of interrupt entry occurs, the state of the 8087 ==
--Numeric Data Processor will always be saved as part of the context

--of the interrupted task, because the normal task-switching

--mechanism will attempt to restore it before resuming the

--interrupted task.

R

e

‘—~This is a Non-Maskable Interrupt Entry invoked only by NMI whose
--accept body makes no entry calls.

NO_NDP_NON_MASKABLE

--This is a Non-Maskable Interrupt Entry invoked only by NMI whose
~--accept body makes no entry calls.

~-It differs from NON_MASKABLE only in that the state of the 8087
--Numeric Data Processor is neither saved nor restored during
--interrupt delivery.

):

pragma PAGE;

-— NOTE: Be sure to compute TICK and TICKS_PER DAY by hand, as the roundoff --
-- errors introduced in computer arithmetic are unacceptably inaccurate. -

-—$START iAPX86
--If one loaded the Programmable Interval Timer (PIT) clock counter with t

he

--shortest possible delay, namely 1, TICK is the amount of time, in second
S,

--which. would pass between the loading and the interrupt which the PIT wou
14 e e .o e e e

~--issue upon counting down and reaching zero.

TICK : constant := 6.510_416_666_666_666_666_667E~6;
--roughly 6.5 microseconds
--§STOP iAPX86

--#START iAPX186
-—# --For the system clock counter of the iAPX186's Internal Timer Unit, TICK
is
--# --the amount of time, in seconds, that it takes to count from 0 to 1.

e --IMPORTANT: The iSBC 186/03A runs at 8 MHz, and its Internal Timer Unit's
-=# --base clock rate is 8 MHz divided by four, or 2 MHz.

~--# --Therefore one counter tick = 1 sec. / 2_000_000 = 0.000_000_5 sec.

haind --One major clock cycle 2**16 * one counter tick

-4 - 65_536 * 0.000_000_5 sec.

0.032_768 sec.

-—# --We would like a greater time interval between counter interrupts used fo

W oun

-—# -~timekeeping. In fact, we would like about one second, or as close as
wammuses: | cemssPOSSible. This means that we must prescale our system clock counter.

m' e e e L et L e RIS bt e < b, 5 B 8
: .

--%# --To find prescale factor, solve for X:
-4 - X * one major clock cycle = 1 second

--# ~-- X * 0.032_768 sec. = 1 sec.

—% - X =1/ 0.032_768

— - X = 30.517_578_125

— -— X "= 30 *
--’ -

--4 -=~S0 SYSTEM.TICK

—-’ -

a prescaled counter tick
30 * 0.000_000_5 sec.
0.000_015 sec.

-—’ -

ey

~—#
~—%
The
-=#
~=#
et
-—#
-—#
-4
-
-4
-—#
-=#
et |
-4

--and a prescaled major clock cycle = 2**16 * one prescaled counter tick
-— o : e " ='65_536 * 0.000_015 sec.

- "= 0.983 sec.

--There are 66_666 + 2/3 ticks in a seconad. B : o
--The number of ticks per second must be used to calculate the values of ¢t

--ADA_RSL constants CLOCK TICKS PER DAY, TICKS PER HALF _DAY, and INT_CHUNK_
--~RAW TIME.

ot

TICK : constant := 0.000_015; --15 microseconds

--$STOP 1iAPX186

--$START iAPX286P, iAPX386P, iAPX286R, iAPX386R

--1f one loaded the Programmable Interval Timer (PIT) clock counter with t

--shortest possxble delay. namely 1, TICK is the amount of time, in second

.l' : i

-~which would pass- between the loadxng and the interrupt which the PIT wou
--issue upon counting down and reaching zero.

--The CLK0 input to the 8254 PIT on the iSBC 286/10 is 1.23 MHz.

--So0 one counter 0 tick = 1 sec. / 1_230_000 = Q. 0000-00813_00813_... sec.
--One major clock cycle 2**16. * one counter tick

- 65_536 * 0.0000_00813_00813_... sec.

- 0.0535 sec.

--There are 1_230_000 (in hex, 16#0012_C4BO#) ticks in a second if
--is not prescaled.

--The maximum recommended value of the smallest delay duration (LRM 9.6) i

--50 microseconds. This will give the lowest possible frequency of timer
~~interrupts. To achieve this, another counter is needed as a prescaler.

--prescale factor (X) is calculated as follows.

-- X = 0.0000_5 / One counter 0 tick
-- X = 0.0000_5 / 0.00600_00813_00813_....
- X = 61.5

- X = 61 (nearest rounded off value)

~-Therefore SYSTEM.TICK 61 * counter 0 tick

61 * 0.0000_00813_00813_... sec.
0.0000_49593_49593_49593_... sec.
49.593_49593_49593_49593_... microseconds
2**16 * SYSTEM.TICK

65_536 * 0.0000_49593_49593_49593_... second
3.2501_59349_59349_59349_... seconds

--0One major clock cycle

L—..

mgﬂnucxwv‘constant*"-*o .0000_49593_49593 49593- -=about 49.59 mi
croseconds

-4
te

-4
-
-4

TICKS_PER_SECOND : constant := 20163.93442_62209_52836_06557; --approxima

~-TICKS_PER_SECOND must be used to calculate (by hand!) the values of the
--ADA_RSL constants CLOCK_TICKS_PER_DAY, TICKS_PER_HALF_DAY, and INT_CHUNK_
~-RAW_TIME.

--#STOP iAPX286P, iAPX386P, iAPX286R, iAPX3.6R

FllIlIIIIlIIllllIlIlllIIlIlIlIlllllIlllllllllllIIIIIIIIII-I-----rAA

~~#START PC_DOS

-~ ==1f one loaded the Programmable Interval Timer (PIT) clock counter with t
he '

-—4 -—-gshortest possible delay, namely 1, TICK is the amount of time, in second
S,

--# --which would pass between the loading and the interrupt which the PIT wou
1d .

- -=-igsue upon bpunting down and reaching zero. The clock input to the

--§ =--PIT is 1.19318 MHZ, so a tick is 1/1.19318 MHZ or approximately

-—-% --0.8380965E-6 seconds

--$ TICK : constant := (.838096515E-6;

--§ =--roughly .83 microseconds
--$STOP PC_DOS

type TIME is private;
NULL_TIME : constant TIME;

type DIRECTION_TYPE is(AUTO_INCREMENT, AUTO_DECREMENT);
type PARITY_TYPE is(obD, EVEN);

type FLAGS_REGISTER.is. : . . Cm e e
record .

-—-4START iAPX286P, iAPX386P

Bt ; NESTED_TASK : BOOLEAN :+= FALSE; -
. ~=# .. IO_PRIVILEGE LEVEL : NATURAL range 0..3 := 1;
--§STOP 1iAPX286P, iAPX386P
OVERFLOW : BOOLEAN := FALSE;
DIRECTION : SYSTEM.DIRECTION_TYPE := SYSTEM.AUTO_INCREMENT;
INTERRUPT : BOOLEAN := TRUE:
TRAP :+ BOOLEAN := FALSE:
SIGN : BOOLEAN += FALSE;
ZERO : BOOLEAN := TRUE; =--nihilistic view
AUXILIARY : BOOLEAN := FALSE;
PARITY : SYSTEM.PARITY_TYPE := SYSTEM.EVEN;
CARRY : BOOLEAN := FALSE;
end record;
for FPLAGS_REGISTER use
record
--$START iAPX286P, iAPX386P
bt NESTED_TASK at 0 range 14..14:
oo —oweee IO_PRIVILEGE_LEVEL at 0 range 12..13;_ —— -

WTOP ,.11A9x286P,_,1APx3869W...@ v eeTt -

IS el hey s

OVERFLOW at 0 range 11l..11;
DIRECTION at 0 range 10..10:
INTERRUPT at 0 range 9.. 9;
TRAP at 0 range 8.. 8:
SIGN at 0 range 7.. 7;
ZERO at 0 range 6.. 63
AUXILIARY at 0 range 4.. 4;
PARITY at 0 range 2.. 2;
CARRY at 0 range 0.. 0:

-

end record;

NORMALIZED FLAGS_REGISTER : constant SYSTEM.FLAGS_REGISTER := -

(,
—§START 1APX286P, iAPX386P
-—4 NESTED_TASK => FALSE,
—4 I0_PRIVILEGE_LEVEL => 1,
--§STOP iAPX286P, iAPX386P

OVERFLOW => FALSE,
DIRECTION => SYSTEM.AUTO_INCREMENT,
INTERRUPT => TRUE,

TRAP => FALSE,

SIGN ' => FALSE,

ZERO - => TRUE, --nihilistic view
AUXILIARY => FALSE,

PARITY => SYSTEM.EVEN,

CARRY > FALSE

subtype PRIORITY is INTEGER range l..l1l5;

UNRESOLVED_REFERENCE: exception; --see Appendix 30 of A-spec
SYSTEM_ERROR ~ -~ - : exception;

function EFFECTIVE_ADDRESS - -- - Te s e
(A: in SYSTEM.ADDRESS - ~'—° R e
) . .
return SYSTEM.ABSOLUTE_ADDRESS;

--PURPOSE:
-- This function, written in ASM86, returns the 20-bit effective address
-- specified by the segment/offset register pair A.

pragma INTERFACE(ASM86, EFFECTIVE_ADDRESS);

function FAST_EFFECTIVE_ADDRESS
-- (A: in SYSTEM.ADDRESS
-—found in DX (segment part) and AX (offset part), NOT on stack
-
return SYSTEM.ABSOLUTE_ADDRESS:
--in DX:AX:;

~-PURPOSE:
-- This function, written in ASM86, returns the 20-bit effective address
enmagemwec=emSpecified by _.the segment/offset register pair DX:AX. .. -

m;'n'rhis function ‘is ‘intended for use by ASM routines. +It does not obse:ve
~- Ada calling conventions and therefore does not make a null SFDD., It
~- does save and later restore all those registers that it uses
~- internally.
pragma INTERFACE(ASMS86, FAST_EFFECTIVE_ADDRESS);

function TWOS_COMPLEMENT_OF
{ W: in SYSTEM.WORD
)

return SYSTEM.WORD;

—~PURPOSE:
) -= ©This function, written in ASM86, returns the two's complement of the
==~ given argument.
-~ASSUMPTIONS:
=~ 1) CRITICAL REGION INFORMATION:
- This procedure makes no assumptions about critical regioms.
- It neither enters nor leaves a critical region.
pragma INTERFACE(ASM86, TWOS_COMPLEMENT_OF);

procedure ADD_TO_ADDRESS
(ADDR : in out SYSTEM.ADDRESS:;
OFFSET: in SYSTEM.OFFSET_REGISTER);

--PURPOSE:
-- This procedure, written in ASM86, adds OFFSET to the offset part of
-- ADDR. 1If overflow occurs, NUMERIC_ERROR is raised.
--SIDE EFFECTS:
-- Raising of NUMERIC_ERROR.
pragma INTERFACE(ASM86, ADD _TO_ADDRESS):

procedure SUBTRACT_FROM_ADDRESS
(ADDR : in out SYSTEM.ADDRESS:
OFFSET: in SYSTEM.OFFSET_REGISTER):

--PURPOSE:
-- This procedure, written in ASMB86, subtracts OFFSET from the offset part
-- of ADDR. If underflow occurs, NUMERIC_ERROR is raised.
--SIDE EFFECTS:
~- Raising of NUMERIC_ERROR.
pragma INTERFACE(ASM86, SUBTRACT_FROM_ADDRESS):

function INTERRUPT_TYPE_NUMBER_OF
(A : in SYSTEM.ADDRESS

)
return SYSTEM.INTERRUPT_TYPE_NUMBER;

~-PURPOSE:
~- This function, written in ASM86, returns the Interrupt Type Number that
-- uniquely identifies the interrupt whose interrupt vector is located at
-~ the specified address. 1If this address is not the address of an
-= interrupt vector, CONSTRAINT_ERROR is raised.
--SIDE EFFECTS:
-- Raising of CONSTRAINT_ERROR.
pragma INTERFACE(ASM86, INTERRUPT_TYPE_NUMBER_OF);
[P S - o N .
y y) X . » Gy o, Pl TRZTE NS S e T Can
procedure GET_ADDRESS_FROM_INTERRUPT_TYPE_NUMBER
(A :+ out SYSTEM.ADDRESS;
ITN : in SYSTEM,INTERRUPT_TYPE_NUMBER

);

--PURPOSE:
-~ This procedure, written in ASM86, returns the address of the interrupt
-~ vector numbered ITN.

pragma INTERFACE(ASM86, GET_ADDRESS_FROM_INTERRUPT_TYPE_NUMBER);

#

function GREATER_THAN
. (AL : in SYSTEM.ADDRESS;
. A2 in SYSTEM.ADDRESS

(1]

) .
return BOOLEAN:;

--PURPOSE: . . e “o oo :
-- This function, written in ASM86, returns the value of the expression
-- Al > A2; -

pragma INTERFACE(ASM86, GREATER_THAN);

function MINUS -~ S
(Al : in SYSTEM.ADDRESS:;
A2 : in SYSTEM.ADDRESS

) .
return LONG_INTEGER;

~-PURPOSE: .
-- This function, written in ASM86, returns the signed value of Al - A2,
pragma INTERFACE(ASM86, MINUS);

function "> . - - . ..
(Al : in SYSTEM.ADDRESS; -
A2 : in SYSTEM.ADDRESS

D
return. BOOLEAN. renames SYSTEM.GREATER_THAN; -

function *-*
(Al : in SYSTEM.ADDRESS:;
A2 : in SYSTEM.ADDRESS

)
return LONG_INTEGER renames SYSTEM.MINUS;

-- procedure ADJUST_ FOR_UPWARD_ GROWTH

- (OLD_ADDRESS : in SYSTEM.ADDRESS;

- ADJUSTED_ADDRESS: out SYSTEM.ADDRESS);
~- Transforms the given SYSTEM.ADDRESS into a representation yielding
~= the same effective address, but in which the SEGMENT component is
~- as large as possible.

-- procedure ADJUST_FOR_DOWNWARD_GROWTH

- (OLD_ADDRESS ¢ in SYSTEM.ADDRESS;

— ADJUSTED_ADDRESS: _Out_SYSTEM.ADDRESS)} ecirivedc=mrecw -, amorme- « Lt
W’:rans!orms :the .given SYSTEM.ADDRESS into a representation yielding - T
) “-~""the same effective address, but in which the OFFSET component is as

-- large as possible.

--private

-- pragma INTERFACE(ASM86, ADJUST_FOR_UPWARD_GRQWTH);
-=- pragma INTERFACE(ASM86, ADJUST_FOR_DOWNWARD_GROWTH);

private

e

type LONG_CYCLE is artay(i..3)of SYSTEM.WORD;
pragma PACK(LONG_CYCLE); --Make this type occupy 64 bits.

type TIME is --This may be viewed as a single 64~bit integer
record --representing a quantity of SYSTEM.TICKs.
CYCLES : LONG_CYCLE;
TICKS : SYSTEM.WORD;
end record; -

for TIME use record
CYCLES at 0 range 0..47;
TICKS at 6 range 0..15;
end record;

--A TIME variable may be viewed as a 64-bit integer, or as a record with a
--more significant CYCLES part and a less significant TICKRS part. Whenever
-=the TICKS part is incremented, the addition may carry over into the
--adjacent CYCLEs part.

--Storage layout of a variable of type TIME:

-— increasing addresses

- >
- | cycLes(i) | cCYCLES(2) | CYCLES(3) | TICKS |
- \ /
- \/
- one word
NULL_TIME : constant TIME := ((OTHERS => 0), 0);
end SYSTEM;
(U v P e D O e L R IR
i P PBERBAN 9 o= g s 3w < N § & T .

[e

vv
(4) Representation Clause Restrictions

AARARARAAAMAAAAAAAAAALAMAAARAAAAARAARANARARARAMAAAAAAAAAARARAARARAARARAAARAARARAAAMLABMARAAANAAA

S S e aaa a2 S TR e R e S L
Representation clauses specify how the types of the language
are to be mapped onto the underlying machine. The following
are restrictions on representation clauses.

+++

'Address CIauses o

. ! Vs

Add:ess clauses are supported for the following items:
1. Scalar or composite objects with the following restrictions:

(a) The object must not be nested within a subprogram or
task directly or indirectly.

{b) The size of the object must be determinable at time of
compilation.

2. Subprograms with the following restrictions:

(a) The subprogram can not be a library subprogram
(LRM requirement).

(b) Any subprogram declared within a subprogram having an
address clause will be placed in relocatable sections.

3. Entries - An address clause may specify a hardware interrupt
with which the entry is to be associated.

Length Clause

T'STORAGE_SIZE for task type T specifies the number of bytes
to be allocated for the run-time stack of each task object of
type T.

Enumeration Representation Clause

In the absence of a representation specification for an
enumeration type T, the internal representation of T'FIRST is
0. The default SIZE for a stand-alone object of enumeration
type T will be the smallest of the values 8, 16, or 32, such
that the internal representation of T'FIRST and T'LAST both
fall.within_the range:

TR PP e v i wmaes

—rreSinlfitn - e N b e O e

_2e(T'SIZE - 1) .. 2##(T'SIZE - 1)-1.
Length specifications of the form:

for T'SIZE use N;
and/ocr enumeration representations of the form:

for T use aggregate

.

-

Record

Are permitted for N in 2..32, provided the representations
and the SIZE conform to the relationship specified above,
or else for N in 1..31, provided that the internal
representation of T'FIRST > = 0 and the representation of
T'LAST = 2**(T'SIZE) - 1.

For components of enumeration types within packed composite
objects; the smaller of the default stand-alone SIZE and the
SIZE:E:om a length specification is used.

In accordance with the rules of Ada, and the implementation of
package STANDARD, enumeration representation on types derived

from the predefined type BOOLEAN are not accepted, but length

specifications are accepted.

Representation Clause
A length specification of the form
for T'SIZE use N;

Will cause arrays and records to be packed, if required, to
accommodate the length specification.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that storage space requirements
are minimized at the-possible expense of -data-access time and
and code space. ~ ' LTI R e e

A record type representation specification may be used to
describe the allocation of components in a record. Bits are
numbered 0..7 from the right. (Bit 8 starts at the right of
the next higher-numbered byte.)

The alignment clause of the form:

at mod N

can specify alignment of 1 (byte) or 2 (word).

-

R —_—

‘i‘“i‘u‘gU“UUuubUUvvUVVvVV
.(5) Conventions e .

AQAAQ‘QAAAAAAAA&.AAA.AQQQAAQQAQA.AAAAAQAAQ&AhahaahsaohabhaqﬂaaaahaaAAAAAAAAA‘QA&

B S B L T A e
The following conventions are used for an implementation-

generated name denoting implementation-dependent components.
+++

NONE =

- [T

VVVVVVVVVVVVVVVVVVVvVVVVVVVVVVVVVVVVVVVVVVVVVVVVQVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
(6) Address Clauses .)

AAAARAARAAAAARAAANAARARAANAAAAARARAAAAAAARARNARAAAANLAAAAARARAARAARDAAAAAARAARRARNAAAAAMAANA

R e T s s eSS A IS S s

The following are conventions that define the interpretation

of expressions that appear in address clauses, including -
those for interrupts.

A R AR R R A RR e e e R

NONE

vv
(7) Unchecked Conversions - -« ==-v . o ozl ST e meetea e on il

aaaaan»aAAAAAAAAA‘&.QAAAAAAQAAAAA&AAAAQAAAQAAAAAAAQAAAAAA‘AAAAAAAAAQAAQAAAAAAA&.A

S S a2

The following are restrictions on unchecked conversion,) St
including those depending on the respective sizes of objects

of the source and target,

S b o 2 e N s R o d T R T T N R S Srary

A program is erroneous if it performs UNCHECKED-CONVERSION when
the size of the source and target types have different.

VVYVVVVVVVVYVVVVVVVVVVVVYVVVIYVVVVVVVVVVVVVVVVVVVYVVVVVVVV VY VYVYYYYVYVYYYYYVYYYYY
(8) Input-Output Packages

AARMARAAAAAAANAAAAAAARAARAARAARRAAAAAAAAAAARAAAADNARAAMAAANRAARNAARNAAARDANRAAAAAAANAARAA

B T e R e e AR RS St o R RS W S P WA S ey -
The following are implementation-dependent characteristics

of the input-output packages.
R e e S s a e s s 22 TR LY S S N e

SEQUENTIAL_IQ_Package

e T g s . 1, P e L P

o e N PP U YU P - L e

NOT SUPPORTED

L Y e e e R R I LR L S SR L R T T LR S L R R A
Declare file type and applicable operations for files of
this type.

LR L S Y R PR R S R R 2L L S TR N SN S S PP

DIRECT_I0 Package

NOT SUPPORTED

TEXT_IO0 Package
=—* PACKAGE SPECIFICATION FOR TEXT_IO

B R A AR AN R R AR RN RN RN R R RN R RN R L AR AR NN AR A R R R R R RN A RN AR R AN R R AN R RN RN RN RANARRANR

The Specification of the Package TEXT_IO contains the following
(implementation specific) definitions in addition to those specified
in 14.3.10 of the LRM:

A 22 A2 2 2222222222 2222222222222 R 2222222 22 R R R R R Y R R R Y R R SR R R R R 2 2)

-—% Copyright 1986 Softech, 1Inc., all rights resegved.

-- Copyright (C) 1987, SofTech, Inc.
with ADA_RSL, IO_EXCEPTIONS;

--#START iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX386P
with SYSTEM, IO_DEFS;

--#STOP iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX386P

--#START PC_DOS
--# with SYSTEM, IO_DEFS, BASIC_IO;
--#STOP PC_DOS

B T L R T R R

-=* PACKAGE SPECIFICATION FOR TEXT_IO

-~* PURPOSE:-- e
-3 This package provides input and output services for textual files

-~3

-3 including creation,deletion,opening, and closing of said files.

-~3 This package is as specified in the Ada Reference Manual (1982).

-~3

-~3 And here a word about primary and secondary routines. A primary routine

is

-3 always visible outside the package. If it references a file, it will

-~3 attempt to gain exclusive access to that file descriptor. (The term

--3 "exclusive access" is used with regard to tasks.) All modifications or

--3 tests on file descriptor FIELDs must be made only if the current task

--3 has exclusive access to that descriptor. In every case where a primary

--% routine gains exclusive access to a file descriptor, that routine must

-~3 release the file descriptor beFORE exiting. Primary routines may call i

-3 primary or secondary routines. Secondary routines are never visible

-3 outside the package. If a secondary routine references a file descriptor

’

-—% that routine assumes exclusive access for that descriptor. Secondary

== routines may. only call other secondary.routines. _All calls to BASIC_IO .
m' mtor reading or writing are made by secondary routines. All other . T

-—1 BASIC_10 calls are made by primary routines.

PRAGMA PAGE;
--* SPECIFICATION:

PACRAGE text_jio IS . & - . o ;
USE ada_rsl; . . . : .

TYPE file_type ié'niurrép PRIVATE;

TYPE file_mode IS (in_file, out_£file);

TYPE cou;t IS RANGE 0 ...intéger'LAST;

SUBTYPE éositive_cbunt IS‘Eount‘RANGE 1l .. count'LAST;
unboundeé : CONSTANT count := 0; =~ line and page length
SUBTYPélfield IS integer ﬁANGE 0 .. integér'LAST;

SUBTYPE number_base IS integer RANGE 2 .. 16;

TYPE type_set IS (lower_case,upper_case);

-- File Management

PROCEDURE create (file IN OUT file_type:;

mode : IN file_mode := out_file;
name : IN string := "";
form ¢ IN string := "");:

PROCEDURE open (Eile : IN OUT file_type:

mode : IN file_mode;
name : IN string;
form : IN string := "%);

PROCEDURE close (file : IN OUT file_type);

PROCEDURE delete (file

IN OUT file_type);

IN OUT file_type:;
IN file_mode);

PROCEDURE reset (file
mode

PROCEDURE reset (file : IN OUT file_type);
FUNCTION mode (file : IN file_type) RETURN file_mode;

wemtnraree EUNCTION_name ... file :_IN file_type) RETURN string;

-~

Vo mcmems s o s B e L. camr @

Ml £EP 773V Vi Rl Al L A wer g - 4 . Vst

FUNCTION form f file : IN file_type) RETURN string:

a0

FUNCTION is_open (file : IN file type) RETURN boolean;:

-- Control of default input and output files - —— -
PROCEDURE set_input (file : IN file_type);
PROCEDURE set_output (file : IN file_type);

FUNCTION standard_input RETURN file_type;

e———

FUNCTION

FUNCTION
FUNCTION

standard_output

current_input
current_output

-~ Specification of line and

RETURN file_type;
RETURN file_type:

page lengths

RETURN file_type;

: IN count); -~ for default output file

¢ IN count); -= for default output £il

: IN file_type) RETURN count;

-- for default output file

: IN file_type) RETURN count;

IN positive_count

IN positive_count :

o
]

-

-~
e

[}
s
-~

e

1)

1)

: IN file_type) RETURN BOOLEAN;

-~ default output file

S —ag

-—rs = ;faﬁit 1npﬁg.file

: IN file_type) RETURN boolean;

-- default input file

: IN file_type) RETURN boolean;

-= default input file

PROCEDURE set_line_length (file : IN file_type;
to : IN count });

PROCEDURE set_line_length (to

PROCEDURE set_page_length (file : IN file_type;
to : IN count);

PROCEDURE set_page_length (to

e

FUNCTION line_length { file

FUNCTION line_length RETURN count:

FUNCTION page_length (file

FUNCTION page_length RETURN count;

-~ Column, Line, and Page Control

PROCEDURE new_line (-£ile * : IN file_type:
spacing :

PROCEDURE new_line (spacing : IN positive_count

PROCEDURE skip_line (£ile : IN f£ile_type:;
spacing :

PROCEDURE skip_line (spacing : IN positive_count :

FUNCTION end_of_line (file

FUNCTION end_of_line RETURN boolean;

PROCEDURE new_page (file : IN file_type);

PROCEDURE new_page;

PROCEDURE skip_page (file : IN file_type);

gt Tsap—
WOCEDURE ;mw8kip_page; e e T TP
» rbhomp O e

FUNCTION end_of_page (file

FUNCTION end_of_page RETURN boolean;

FUNCTION end_of_file (file

FUNCTION end_of_file RETURN boolean;

PROCEDURE set_col (€file : IN file_type;

to ¢ IN positive_count
PROCEDURE set_col (to " : IN positive_count
tput file - .
PROCEDURE set_line (file : IN file_type:;
to : IN positive_count
PROCEDURE set;line (to : IN positive_count
tput file -
FUNCTION col (file : IN file_type) RETURN
FUNCTION col RETURN positive_count;
tput file
FUNCTION line (file : IN file_type) RETURN
FUNCTION line RETURN positive_count;
tput file
FUNCTION page (file
FUNCTION page RETURN positive_count;
file e
—- CHARACTER input_output
PROCEDURE get { £ile : IN file_type;

- T i item : OUT character):;
PROCEDURE get (item : OQUT character);
PROCEDURE put (£ile : IN file_type;

item : IN character);
PROCEDURE put (item : IN character);
-- STRING input_output
PROCEDURE get (file : IN file_type:
item : OUT string);
PROCEDURE get (item : OUT string);
PROCEDURE put ({ £ile : IN file_type;
item : IN string):
“PROCBDURE put (-.i tem
. vty _— > ot £ D R e S T L
PROCEDURE get_line (file : IN file_type:
item : OUT string;
last : OUT natural):
PROCEDURE get_line (item : OUT string;
last : OUT natural);
PROCEDURE put_line (file : IN file_type;
item : IN string);

e ______________________________________ = S

-- for default ou

-~ for default ou

positive_count;

--~ for default ou

positive_count;

-~ for default ou

: IN file_type) RETﬁﬁN positive_count;

-~ default output

nv:‘INs;,:.ing 7')A:,m4'“-—‘lv\»-:.~l'.'ﬁ-»» D T2 E

~—n

PROCEDURE put_line (item

.
.

IN string):

GENERIC
TYPE num IS RANGE <>;

PACRAGE integer 4o IS
default_width : field :=
default_base : number_ba

PROCEDURE get (file

item
width

PROCEDURE item

width

get

PROCEDURE file
item
width

base

put

item
width
base

PROCEDURE put

from
item
last

PROCEDURE get

PROCEDURE to
item

base

put

END integer_io;

== Generic package for Input_out of Integer Types

~~-INTEGER __1I0
num'WIDTH;
se := 10;

IN file_type:;

: OUT num;

¢ IN field := 0);

s OUT num;

: IN field := 0);

¢ IN file_type:;

s IN num;

: IN field := default_width;

IN number_base := default_base);
IN
IN
IN

num;
field := default_width;
number base := default_base);

s ee ae

IN_string;
QUT num;
OUT positive);

QUT string:;
IN num;
IN number_base

default_base);

-- Generic packages for Inpu

GENERIC
TYPE num IS DIGITS <>;

PACRAGE float_io IS
default_fore : field
default_aft __: _field :=

Wdefaul t_exp sw:.fleld :=.
AN 0w B ..t
PROCEDURE get (file

item
width

PROCEDURE get (item

width

file
item

PROCEDURE put (

t_ouput of Real Type

2;
num'DIGITS =_1; __.

3; W N o

. ey T

e,

in file_type;

: OUT num;
: IN field := 0);
: OUT num;
: IN field := 0);

IN file_type;
IN num;

fore ° : IN field := default_fore;
aft : IN field := default_aft;
exp :t IN field := default_exp);
PROCEDURE put. (item : IN num;
fore t IN field := default_fore;
J aft : IN field := default_aft;
. exp . : IN field := default_exp);

IN string;
OUT num;
OUT positive);

PROCEDURE get (from
. item
last. -

PROCEDURE put (.TO OUT string;

item - : IN num;
aft : IN field := defaubt_aft;
exp : IN field := default_exp);

END float_io;

GENERIC
TYPE num IS DELTA <>;

PACKAGE fixed_io IS

default_fore : field := num'FORE;.
default_aft : field := num'AFT:;
default_exp : field := 0;

PRCCEDURE get (file IN file_type:

item: : OUT num;
width : IN field := 0);
PROCEDURE get (item : OUT num;
width : IN field := 0);
PROCEDURE put (file : IN file_type:
item : IN num;
fore : IN field := default_fore;
aft : IN field := default_aft;
exp : IN field := default_exp):
PROCEDURE put (item : IN num;
fore : IN field := default_fore;
aft : IN field := default_aft;
exp : IN field := default_exp):
) ;AN string; ..o = .

PROCEDURE get (from _ _ .
e ' item ommnieOUT NUM; arvesmmssnsanimmer wrmn o ..

last QUT positive);
PROCEDURE put (to : OUT string;
item : IN num;
aft : IN field := default_aft;
exp : IN field := default_exp):

END fixed_io:;

-— Generic package for Input_Output of Enumeration Types

GENERIC
TYPE enum IS (<>);

PACKAGE enumeration_io IS
default_width £

ield

default_setting : type_set

PROCEDURE get (file
item

PROCEDURE get (item

PROCEDURE put (file
item
width
set

PROCEDURE put (item
width
set

PROCEDURE get (from
item
last
PROCEDURE put (to

item

IN

e oo

0;
upper_case;

non

file_type;

QUT enum);

: OUT enum);

IN
IN
IN
IN

IN
IN
IN

IN

e 0 ¢

file_type:;
enum;
field

= default_width;
type_set d

efault_setting

enum;
field B
type_set :

= default_width;
= default_setting

string;

OUT enum;
OUT. positive);

OUT string;

IN enum;
set IN type_set := default_setting);
END enumeration_io;
-- Exceptions

status_error : EXCEPTION RENAMES io_exceptions.status_error;
mode_error : EXCEPTION RENAMES io_exceptions.mode_error;
name_error : EXCEPTION RENAMES io_exceptions.name_error;
use_error : EXCEPTION RENAMES io_exceptions.use_error;
device_error : EXCEPTION RENAMES io_exceptions.device_error;
end_error : EXCEPTION RENAMES io_exceptions.end_error;
data_error : EXCEPTION RENAMES io_exceptions.data_error;
layout_error : EXCEPTION RENAMES io_exceptions.layout_error;

-

AR D P8k p Y,

PRIVATE

PRIVATE

=~ REPRESENTATION OF TEXT_IO FILES:

-~ This implementation of TEXT IO is for the Intel targets. For
-~ input files, a variety of possible file formats are supported.
-- For output, a single canonical format corresponding to the format

~— of DOS produced text files is used.

TEXT_IO OUTPUT FILE FORMAT

eop

eof

::= page (eop page)} eof

line (eol line}
{character}
ASCII.CR ASCII.LF
ASCIi:EF o

ASCII.SUB .

character ::= any ASCII character except CR, LF, FF, and SUB

Note that for an output file, a physical line terminator ends
except the last line in each page. A physical page
follows every page except the last page which is

by the physical file terminator. The final page

is omitted in keeping with common practice.

every line
terminator
terminated
terminator

An empty physical file logically consists of an Ada line terminator
followed by a page terminator, followed by a file terminator.

A physical file containing only a form feed character logically consists
of two pages, each containing a single line empty line.

TEXT_IO INPUT FILE FORMATS

The PHYSICAL_syntax _for an INPUT file is broad enough to accept a variety

Ezgssg;ﬁgkoﬂrpossibleitext-file.fo:ms including some which are not produced by
“TEXT_I0. ‘The following physical text patterns are interpreted as Ada
logical lines, pages and files by TEXT_IO when reading files:

-

file

page

line

eol

.

]

page [eop page} eof
line (eol line}
{character}

ASCII.CR ASCII.LF

| ascII.cr

| ascrr.Lp
eop 2= ASCII.FFP
eof s:= ASCII.SUB

| (end of data condition)

characte; ::= any character except ASCII: CR, LF, FF, SUB.

Thus for an input file, a line may be explicity terminated by a carriage
return/line feed pair, by carriage retucn alone, or by line feed alone.

An end of line is always implicit in a form feed or the physical end of

file.

A file may be explicitly terminated by a control Z character or

implicity when the end of input data is encountered. However, an

embedded control Z character will be treated as the end of file even
though it may not be the physical end of data. The end of file is

always preceded by an implicit logical line terminator and page terminator.

The procedure READ_CHAR generates a page_term character corressponding
tothe implicit page terminator which precedes the end for file.

The implicit LINE_TERMINATOR which p:ecedes each page terminator is
not generated READ_CHAR. e

In the implementation of TEXT_IO, the code which interprets or
produces the physical file syntax has been isolated in the
following procedures: -

read_char gets the next input character or teminator.
end_of_line checks if a line, page or file terminator is next.
end_of_page =~ checks if a page or file terminator follows.
end_of_file checks if a file terminator follows.

txt_put_char - output a logical character.

txt_new_line - starts a new line.

txt_new_page - starts a new page.

write_char - puts the next physical character.

Private Data:
buffer_length : CONSTANT := 256;
wmax_line_length : CONSTANT := buffer_length;

TYPE char_buffer IS ARRAY (integer RANGE l..buffer length) OF character;

6P

T PP = P

N TYPE tile rec’IS -<~common file state desctiption, actual FILE_TYPE
RECORD -- declarations will be access types to this record.

-—#START PC_DOS
stream : basic_io.stream_type;
-= BASIC_IO file handle.
--#STOP PC_DOS
-~#START i1APX86, iAPX186, iAPX286, iAPX286R, iAPXJ86R, iAPX286P, iAPX38

stream : io_defs.stream_id_prv;

r-----.-..----.-.-.-.-.-...........................-.-....-.--.--r——

- --#STOP iAPXS8S§, iAPXlBS, iapx286, iAPX286R, iAPX386R, iAPX286P, iAPX38

. 6P o T
mode : £ile_mode; ~=- IN_FILE or OUT_FILE.
curr_col : count := 1; ~~ Next column to be read
S ' ' ~=~ or written.
curr_line : count := 1; -~ Current line in page.
curr_page s -count := 1; ~~ Current page in file.
line_len t count := unbounded;
' B '| == TEXT_IO line_length

page_len count :=.unbounded;

-= TEXT_IO page_length

1
o
-

-~ Index of last character in
ca --~-in TEXT_BUF (when reading)
: == Index of next character in
==~ TEXT_BUF to be read or
. -~ written.
char_buffer; -~ Input/outpt buffer.
character := ASCII.NUL;
-~ Previous character returned
: -~ by READ_CHAR.
pendxng terminator : character := ASCII.NUL;
B T R -~ A terminator which has been
-~ passed to WRITE_CHAR but not
e e : -~ yet placed in the text buffer.
=~ Value may be LINE_TERM,
=~ PAGE_TERM or ASCII.NUL
-~ indicating no pending
-- terminator.
back_up : boolean := false:
== True if TXT_BACK_UP has been
~— called to cause PREV_CHAR to
-- be re-read.
false;
-- Set true when READ_CHAR sees
-- the end of file marker.

curr_rec_length : integer :

text_index

[}
-
-

integer :

text_buf
prev_char

at_eof : boolean

o

END RECORD;

TYPE file type IS ACCESS file_rec;

std_input s file_type; -- the standard and current file descriptors
std_output : file_type; -=~ should not be visible to the user except

wwenCULL.- iNpUt ~i-file_type; e—vwwmeeww~=.through the provided p:ocedure (see above).

wcu:t outputi*file_type; “TREI-IIRINII MY I r AL YIRS e S P s e e

-~ Define logical file marker values.

line_term : CONSTANT character := ASCII.LF;

page_term : CONSTANT character := ASCII.FF; -- form feed (ctrl-L) (1640
Ch)

file_term : CONSTANT character := ASCII.SUB; - (ctrl-2) (l6#1
A¥)

TYPE character_set IS ARRAY (character) OF BOOLEAN;

——= The TERMINATOR array is used to quickly determine whether a character {s
-- is a physical terminator.

terminator : CONSTANT character_set := character_set'

(ASCII.CR |

ASCII.LF |
ASCII.FF ‘|

ASCII.SUB => TRUE,
OTHERS => FALSE);

-- The SPACE_ETC array is used to quickly determine whether a character is
~=~ to be skipped because its a space, tab, vertical tab, or terminator.

space_etc : CONSTANT character_set := character_set’

(* |

ASCII.HT |

ascrr.vr |

ASCII.CR |

ASCII.LF |

ASCII.FF |

ASCII.SUB => TRUE,

OTHERS => FALSE);

END text_io;

e -,

i L A L ST

BERYS

LOW_LEVEL_IO

+++

" Include either the LOW_LEVEL_IO package specxfication or the
following sentence: '

Low-level input-output is not provided.
e g e S s aan s 2 ST T E R

--4 Copyright 1986 Boftech, 1Inc., all rights reserved.

-- Copyright (C) 1987, SofTech, Inc. .

with SYSTEM; use SYSTEM:; =
--* PACKAGE SPECIFICATION FOR LOW_LEVEL_IO

--* PURPOSE:

-9 To support the programming of devices that can be accessed through ports
-3 in the memory space and the I/0 space of the iAPX186... Specific devices
-3 or device types that cannot be assumed to be present in all iAPX186-based
-3 targets should be supported by specific packages (e.g., MPSC).

pragma PAGE; == In package LOW_LEVEL_IO
—~* SPECIFICATION:
package LOW_LEVEL_IO is

--Support for I/O-mapped input and output:

procedure SEND_CONTROL (DEVICE in IO_ADDRESS; DATA
procedure SEND_CONTROL (DEVICE in IO_ADDRESS; DATA
procedure RECEIVE_CONTROL(DEVICE in IO_ADDRESS; DATA
procedure RECEIVE_CONTROL(DEVICE in IO_ADDRESS; DATA

in out BYTE)
in out WORD);
in out BYTE):
in out WORD);

ae as o0 e
e o8 se e

-~Support for memory-mapped input and output:

procedure SEND_CONTROL (DEVICE in ADDRESS; DATA
procedure SEND_CONTROL (DEVICE in ADDRESS: DATA
procedure RECEIVE_CONTROL(DEVICE in ADDRESS: DATA
procedure RECEIVE_CONTROL(DEVICE in ADDRESS; DATA

in out BYTE);
in out WORD);
in out BYTE);
in out WORD);

se s se e
se sa o0 o

end LOW_LEVEL_IO;

Yttt e > A Yttt * b RIS i - -

- a e

X

VVVVYVVVVVVVYVVVVVVVYVVVVVVYVVVVVVVVYVYVYVVVYV VYV VYV VYV VY VYV VYV VY VY VYV VYV VYV YV VY
(9) Package STANDARD

AMAAAARAAAAAAAAAAAAAAARNAARARARAARAAARAAAARAARARANPRAALAAAAAAARAAAAAANAARARNARAAAARAAAAANAAAANRASNAA

-- Copyright (C) 1986, SofTech, Inc.

PACRAGE standard IS

*ﬁtt'tttttii*tt**tti*ttttttttttt*tttttttttt'ﬁﬁ**ﬁﬁﬁ*t'tt*t’ttit*t”it!'t**t*tttﬁ
The Package STANDARD contains the following (implementation specific)
definitions in addition to those specified in Annex C of the LRM:

I YT T3RR3R 2222 222222222222 2R 22222222 22222222222 R332 3232228}

TYPE integer IS RANGE -32_768 .. 32_767;
FOR integer'SIZE USE 16;
TYPE long_integer IS RANGE -2_147_483_648 .. 2_147_4834&47;

TYPE float IS DIGITS 6 RANGE
-(2#1.111_1111 1111 1111 1111 _11114#E+127) ..
roo(2#1.111_1111 1111 1111 1111 1111#E+127);

-- Type float is realized using the Intel machine type SHORT REAL.

~— SHORT REAL provides 24 bits of mantissa (one bit is implied),

-—- and it provides 8 bits for a biased exponent. However only the values
-— 1..254 are exponents of normalized numbers. The bias is 127, so the
-- exponent range is -126..127. '

-— This leads to the following attributes for the type float:

- float'digits = 6 {LRM 3.5.7, 3.5.8]

- float'mantissa = 21 (LRM 3.5.7, 3.5.8]

- float'emax = 84 (LRM 3.5.8]

- float'epsilon = 2.0 ** (-20) [LRM 3.5.8])

- = 2$1.000_0000_0000_0000_0000_00004E-20

- = 16#0.1000004E-4

- float'small = 2.0 ** (-85) (LRM 3.5.8]

-~ = 241.000_0000_0000_0000_0000_0000#4E-85

- = 1640.800_000_0#E-21

- float'large = (2.0 ** 84) * (1.0 - 2.0 ** (-21)) [LRM 3.5.8]

- = 241.111_1111_1111 1111 1111 1#E+83

- = 1640.FFF_FF8_O0#E+21

- float'safe_emax = 127 (LRM 3.5.7, 3.5.8]

- float'safe_small = 2.0 ** (-126) [LRM 3.5.7]}

- = 2#1.000_0000_0000_0000_0000 000063-126

P———— eoytd) - 00 s oo T m e+ re A arrms o

B =,.1640. 400 _0004E-31

- T f1oat'safe_large = (2.0 ** 128) * (1.0 - 2.0 ** (-21)) (LRM 3.5.7]
2¥1.111_1111_1111_ 1221 1111 14E+127

1640 .FFF_FF8#E+32

-~float'last

(2.0 ** 128) * (1.0 - 2.0 ** (-24))

2$1.111 1111 1111 1111 1111 11114E+127
16#0.FFF_FFF#E+32

- 3.40_282_347E+38

- float'machine_radix 2

== fleat'machine_mantissa 24

- float'first
- float'last

L LS SN © SN { SN (S 1}

wou

e e

.

- float'machine_emax = 127

- float'machine_emin = =126

- float'machine_rounds = true
= true

=- float'machine_overflows

TYPE long_float IS DIGITS 15 RANGE
-~ 2#1.111_1111 1111 _1111_1111_1111_1111_1111 1111 1111 1111 1111 111l 1#E+1023
e 241.111 1111 1111_1111_1111_1111_1111 1111 1111 1111 1111 1111 1111 1#E+1023;

== Type long_float i{s realized using the Intel machine type LONG REAL.

== LONG REAL provides 53 bits of mantissa (one bit is implied),

-- and it provides 1l bits for a biased exponent. However only the values
== 1..2046 are exponents of normalized numbers. The bias is 1023, so the
-- exponent range is -1022..1023.

== This leads to the following attributes for the type float:

- long_float'digits
-- long_float'mantissa
- long_float'emax
- long_float'epsilon

15 (LRM 3.5.7, 3.5.8]

51 (LRM 3.5.7, 3.5.8]

204 (LRM 3.5.8])

2.0 ** (-50) (LRM 3.5.8]
16#0.400_000_000_000_00#E-12

- 8.88_178_197 _001_254E-16

- long_float'small 2.0 ** (-205) [LRM 3.5.8])
2#1.000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0#E-205
- = 16#0.800_000_000_000_00#E-51

- T T 1,94_469_227_433_161E-16

- long_float'large = (2.0 ** 204) * (1.0 - 2.0 ** (-51)) ({LRM 3.5.8]
2#1 111_1111_.1111. 1lll _1111 llll 11111111 1111 1311 12111 1111 _111Q_O#E+204
- jLsolIos . . 16#0 FFF_FFF.FFF_FFF_EQ#E+S1

- ’ : ‘ 2. 57_110_087_081_438E+61

- long_float'safe_emax 1023 [LRM 3.5.7, 3.5.8]

- long_float‘safe_small (2.0 ** (-1022)) [LRM 3.5.7]

-~ =241.000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0#E-1022
-- ' = 164#4.000_000_000_000_OO0#E-256

- T 2,22_507_385_850_720E-308

- long_float'safe_large = (2.0 ** 1024) * (1.0 - 2.0 ** (-S51)) (LRM 3.5.7]
-~ =2%1.111_1111 1111 1111 1111 1111 _111] 1111 1111 1111 1111 1111 1110 _O#E+1023
- = 1640.FFF_FFF_FFF_FFF_C#E+256

- T 1.79_768_713_486 232E+308

- long_float'first = -long float'last

- long_float'last

-~ =2#$1.111_11121_1111 1111_1111_1111_1111_1111_1111 1111 1111 1111 1111 14E+1023
-~ = 1640.FFF_FFF_FFF_FFF_F#E+256

- 1.79_768_713_486_232E+308

[}
]
1]

-~ long_float'machine_radix = 2
-~ long_float'machine_mantissa = 53
- long_float'machine_emax = 1023
o long_float 'machine_emin__= _~1022 —t e ps e
Wlonq float!machine_rounds.:eastrue awwe yoms et R b aak Al Rl
" "long_f£loat'machine overflows = true

FOR character'SIZE USE 8;

TYPE duration IS DELTA 2.0 ** (~14) RANGE ~131_072.0 .. 131 _072.0 ;

END standard;

VVVVVVVVVVVVVVVVVVVVVVVVVVVY VYV VYTV VOV VY VYV YV VY Y VVVVVVVVIVIVVVVVIVVVVIVVVYYYYYYY

(10) File names

AAAQAAAA‘QAAAQA....Q..‘ﬁ.hﬂﬂhQQGQQAAAﬁﬁAQA&‘QAQ&AG&&AAAAAAQAQAARQQAA&AAAAAAﬁﬁhh‘

As SEQUENTIAL_IO and DIRECT_IO are not supported on the target(s),
there are no file name conventions on the target configuration(s).

T T v B he S YW e S . o Voot e o

PRV N Aty e | o f L N . B

== FAST INTERRUPT ENTRIES -~

--P:omptwiﬂterrupt Entry:

PROMPT ’ .
--This is a Fast Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body receives control after an
-~interrupt more quickly than an ordinary interrupt entry but more
-~slowly than a Quick or a Non-Maskable Interrupt Entry. The accept
-~body may make conditional entry calls to entries that have been
-~declared to be Trivial Entries by means of the pragma
-~TRIVIAL_ENTRY.

-~When this kind of interrupt entry occurs, the state of the 8087
--Numeric Data Processor will always be saved as part of the context
~--of the interrupted task, because the normal task-switching
--mechanism will attempt to restore it before resuming the
-—interrupted task.

..——Note: In. the. following constant -names; "NDP" stands for "Numeric Data
--Processor," i.e., the Intel 8087.

~-Quick Interrupt Entries:

SIMPLE_QUICK ' .
--This is a Quick Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body makes no entry calls.

NO_NDP_SIMPLE_QUICK ,
--This is a Quick Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body makes no entry calls.

--It differs from SIMPLE_QUICK only in that the state of the 8087
--Numeric Data Processor is neither saved nor restored during
—-interrupt delivery.

SIGNALLING_QUICK '
--This is a Quick Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body may make conditional entry
--calls to entries that have been declared to be Trivial Entries by
--means of the pragma TRIVIAL_ENTRY.

et i e A et Bl PN G610 S 4 Pe AR e

W,—;When-_this.kind of :interrupt entry occurs, the state of the 8087

; e e --Numeric Data Processor will always be saved as part of the context
--of the interrupted task, because the normal task-switching
--mechanism will attempt to restore it before resuming the
--interrupted task.

--Non-Maskable Interrupt Entries:

NON_MASKABLE '

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximm length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$BIG_ID1 <1..119 => 'A', 120 => '1'>
Identifier the size of the
maximm input line length with
varying last character.

$BIG_ID2 <1..119 => 'A', 120 => '2'>
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 <1..59 => 'A', 60 => '3!',
Identifier the size of the 61..120 => 'A'>
maximm input line length with
varying middle character.

S$BIG_ID4 <1..59 => 'A', 60 => '4',
Identifier the size of the 61..120 => 'A'>
maximm input line length with
varying middle character.

$BIG_INT LIT <1..117 => '0', 118..120 =>
An integer 1literal of value 298 1298'>
with enough 1leading zerves so
that it is the size of the
maximum line length.

$BIG_REAL LIT <1l..114 => '0', 115..120 =>
A universal real 1literal of '69.0E1'>

value 690.0 with encugh leading
zeroes to be the size of the

maximum line length.

$BIG_STRING1
A string literal which when
catenated with BIG_STRING2
yields the image of BIG ID1.

$BIG STRINGZ -~
A string literal which when
catenated to the em of
BIG_STRING1 Yyields the image of
BIG_ID1.

$BLANKS
A sequence of blanks twenty
characters less than the size
of the maximm line length.

$COUNT_IAST
A universal integer literal
whose value is
TEXT IO.OCUNT'LAST.

$FIELD LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

$FILE NAME WITH BAD CHARS
An external file name that
either contains invalid
characters or is too 1lorg.

S$FILE NAME WITH WILD CARD CHAR
An external file name that
. either contains a wild card
character or is too long.

SGREATER THAN DURATTION
A universal real 1literal that
lies between DURATION'BASE'IAST
and DURATION'IAST or any value
in the range of DURATION.

SGREATER THAN DURATION_ BASE IAST
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILE NAME1

An external file name which
contains invalid characters.

C-2

<1..60 => 'Al>

<1..59 => 'A!, 60 = 'A'>

<1..100 = ' '>

2 147 _483_647

2_147 483_647

BAD-CHARS “#.%!X

WIID-CHAR* . NAM

75_000.0

t

131_073.0

BADCHAR"@. !

$ILLEGAL EXTERNAL FILE | NAsz
An extermal file name which
is too long.

$INTEGER FIRST -
A universal integer 11teral
whose value 1is INTEGER'FIRST

SINTEGER LAST
A universal integer literal
whose value is INTEGER'LAST.

S$INTEGER IAST PLUS 1
A universal integer literal
whose value is INTEGER'IAST + 1.

SLESS_THAN DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN DURATION BASE FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

SMAX DIGITS
Maximum digits supported for

floating-point types.

SMAX IN IEN
Maximum input line length
permitted by the implementation.

SMAX_INT

A universal integer literal
whose value is SYSTEM.MAX INT.

$MAX_INT PLUS_1
A universal integer literal
whose value is SYSTEM.MAX INT+1.

$MAX_LEN INT BASED LITERAL
A universal 1nteger based
literal whose value is 2#11#
with enough leading zerces in
the mantissa to be MAX IN_IEN
lorg.

C-3

THIS-FILE-NAME-WOULD~BE-PERFECTLY
-LEGAL~IF-TT-WERE-NOT-SO~-LONG—
IT-HAS-NEARLY-ONE-HUNDRED-SIXTY-
CHARACTERS

-2_147_483_648

2 147_483_647

2 147_483_648

~75_000.0

~131_073.0

15

120

2_147_483_647

2_147_483_648

<1l..2 = '2:', 3..117 =>
'0', 118..120 => '11:'>

$MAX_LEN REAL BASED LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zerces in the
mantissa to-be MAX IN IEN lorg.

$MAX_STRING LITERAL
A string 1literal of size
MAX IN_IEN, including the quote
characters.

SMIN_INT
A universal integer literal
whose value is SYSTEM.MIN INT.

SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLCAT, SHORT _INTEGER,
IONG_FLOAT, or LONG_INTEGER.

SNEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

Cc-4

<1..3 => '16:', 4..116 =>
0!, 117..120 => 'F.E:'>

<l => '"., 20.119 => 'A"
120 => iy

~2_147_483 648

No_Such Type

164FFFFFFFE#

APPENDIX D

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 28 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Cammentary. '

B28003A:

E28005C:

C34004A:

C35502P:

A35902C:

C35904A:

C35904B:

C35A03E,
& R:

C37213H:

C37213J:

A basic declaration (line 36) wrongly follows a later
declaration.

This test requires that 'PRAQ«ALISI‘(ON)'mta;pearma
listing that has been suspended by a previous "pragma LIST
(OFF) ;"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINT ERROR.

Equality operators in lines 62 & 69 should be inequality
operators.

Line 17's assigment of the nomimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINT ERRCR, for that value lies outside of the actual
range of the type.

The elaboration of the fixed-point subtype on line 28 wrongly
raises OONSTRAINT ERROR, because its upper bound exceeds that
of the type.

The subtype declaration that 1is expected to raise
CONSTRAINT ERRCR when its compatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC ERROR or CONSTRAINT ERROR for reasons not
anticipated by the test.

These tests assume that attribute 'MANTISSA returns 0 when
applied to a fixed-point type with a null range, but the Ada
Standard doesn't support this assumption.

The subtype declaration of SCONS in 1line 100 is wrongly
expected to raise an exception when elaborated.

The aggregate in line 451 wrongly raises CONSTRAINT ERRCR.

D-1

C37215C,
E, G, H:
C38102C:

C41402A:

C45332A:

C45614C:

E66001D:

A74106C,

C85018B,

C87B04B,
CC1311B:

BC3105A:

AD1AQlA:

CE2401H:

CE3208A:

Various discriminant constraints are wrongly expected
to be incompatible with type CONS.

The fixed-point oconversion on line 23 wrongly raises
CONSTRAINT ERROR.

'S'IORAG_E__SIZE is wrongly applied to an object of an access
type.

The test expects that either an expression in line 52 will
raise an exception or else MACHINE OVERFLOWS is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MACHINE OVERFLOWS may still be TRUE.

REPORT.IDENT INT has an argument of the wrong type
(LONG_INTEGER) .

Wrongly allows either the acceptance or rejection of a
parameterless function with the same identifier as an
emmeration literal; the function must be rejected (see
Cammentary AT-00330).

A bound specified in a fixed-point subtype declaration

lies outside of that calculated for the base type, raising
CONSTRAINT ERROR. Errors of this sort occur re lines 37 & 59,
142 & 143, 16 & 48, and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

Lines 159..168 are wrorngly expected to be illegal; they are
legal.

The declaration of subtype INT3 raises OONSTRAINT ERROR for
implementations that select INT'SIZE to be 16 or greater.

The record aggregates in lines 105 & 117 contain the wrong
values.,

This test expects that an attempt to open the default cutput
file (after it was closed) with mode IN_FIIE raises NAME ERROR
or USE ERROR; by Commentary AI-00048, MODE_ERROR should be
raised.

D-2

